期刊文献+

任意多边形的非结构网格快速生成算法研究

Fast Unstructured Mesh Generation Based on Arbitrary Polygon
下载PDF
导出
摘要 对于包含大尺度运动边界的CFD数值模拟,网格重构是其中的关键,快速稳定的网格生成技术是其中的重要组成部分。建立了基于有向边的适用于任意多边形的快速三角初始化算法;证明了最长边剖分网格细化算法在一定条件下发散,并结合Delaunay边交换技术使细化算法封闭;建立了基于顶点弹簧理论的网格优化方法,以提高网格生成的质量。结果表明,算法具有较好的鲁棒性和高效性。 Mesh reconstruction is the key to the numerical simulation in CFD with large scale moving boundary which contains fast and stable mesh generation arithmetic.Firstly,this framework established efficient initial triangulation arithmetic based on directional edge theory which is fit for arbitrary polygon.Then it proved the arithmetic of longest edge division matches the divergence at some time and closes down the divergence with Delaunay edge swapping.Finally,the paper optimizes mesh with vertex spring model.The results indicate the way established in this study is efficient and stable.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2010年第6期111-115,共5页 Journal of National University of Defense Technology
基金 国家重大专项资助项目 国防科学技术大学优秀研究生创新资助项目(B080103)
关键词 任意多边形 非结构网格 有向边 网格细化 arbitrary polygon unstructured mesh directional edge grid refine
  • 相关文献

参考文献6

  • 1周培德.计算几何[M].北京:清华大学出版社,2004. 被引量:1
  • 2Lawson C L.Software for C1 Surface Interpolation[C]//Mathematical Software,Academic Press,New York,1977:161-194. 被引量:1
  • 3Rivara M C.New Longest-edge Algorithms for Triangular Mesh Generation[J].Computational Geometry:Theory and Application,2002,22:86-95. 被引量:1
  • 4Bowyer A.Computing Dirichlet Tessellations[J].The Computer Journal,1981,24(2):151-166. 被引量:1
  • 5Thompson J F,Weathrill N P.An Aspects of Numerical Grid Generation:Current Science and Art[R].AIAA 93-3539,1993. 被引量:1
  • 6陈欣,熊岳山.复杂平面区域的三角网格生成算法[J].国防科技大学学报,2008,30(4):94-97. 被引量:4

二级参考文献9

  • 1Owen S J. A Survey of Unstructured Mesh Generation Technology [ C]//Proc. 7^th International Meshing Roundtable, Michigan, 1998: 239. 被引量:1
  • 2Lawson C L. Software for C1 Surface Interpolation [C]//Mathermatical Software Ⅲ, J. Rice (ed.), Academic Press, New York, 1977 : 161 - 1941 被引量:1
  • 3Vigo M, Pla N. Computing Directional Constrained Delaunay Triangulations [J]. Computers & Graphics, 2000, 24:181 - 190. 被引量:1
  • 4Baker T J. Triangulations, Mesh Generation and Point Placement Strategies [ C ]//Proc. Computing the Future, 1995:61 - 75. 被引量:1
  • 5Shewchuk J R. What Is a Good Linear Element? Interpolation, Conditioning, and Quality Measures [ C]//Proc. 11^th International Meshing Roundtable, New York, 2002: 115- 126. 被引量:1
  • 6Shewchuk J R. Delaunay Refinement Algorithms for Triangular Mesh Generation [J]. Computational Geometry: Theory and Application, 2002, 22: 86 - 95. 被引量:1
  • 7Rivara M C. New Longest-edge Algorithms for the Refinement and/or Improvement of Unstructured Triangulations [ J ]. International Journal for Numerical Methods in Engineering,1997,40:3313-24. 被引量:1
  • 8Lo S H. 3D Mesh Refinement in Compliance with a Specified Node Spacing Function [J]. Computational Mechanics, 1998, 21:11 - 19. 被引量:1
  • 9关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14. 被引量:169

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部