期刊文献+

基于SURF的彩色图像配准 被引量:17

Color Image Registration Technique Based on SURF
下载PDF
导出
摘要 提出了一种基于SURF(Speeded Up Robust Feature)的彩色图像配准算法。该算法利用图像彩色信息计算得到的颜色不变量来提取图像的特征点;提取到特征点后,结合图像的灰度信息为特征点生成特征描述子;最后采用欧氏距离进行相似性度量,提取两幅图像间匹配的特征点对。实验结果表明,该算法在保持算法的快速性和准确性的同时,获得的配准点对比SURF要多。所以该算法可以有效地避免像原始SURF算法那样因为配准点少而造成的配准失效,从而提高了算法的稳定性。 This paper proposes an automatic color image registration algorithm based on SURF(Speeded Up Robust Feature).Firstly,a color invariant is calculated from the image’s color information to extract feature points from images by the algorithm.Secondly,after the feature points located in,the algorithm uses an image’s gray level information to build a feature descriptor.Finally,match points are extracted from a pair of images by similarity measurement criterion of Euclidean distance.The experimental results show that the algorithm can extract more match points than SURF while retaining fast computational speed and high accuracy.So it can effectively avoid registering failure due to lack of match points of the original SURF algorithm and improve stability of the algorithm.
出处 《红外技术》 CSCD 北大核心 2010年第7期415-419,共5页 Infrared Technology
基金 国家自然科学基金项目 编号:40801171
关键词 SURF 图像配准 颜色不变量 SURF image registration color invariant
  • 相关文献

参考文献11

  • 1Schaffalitzky F.and Zisserman A..Multi View Matching for Unordered Image Sets[J].Computer vision,2002:414-431. 被引量:1
  • 2Tuytelaars T.and Van Gool L,Matching Widely Separated Views Based on Affine Invariant Regions[J].Computer Vision,2004,59(1):61-85. 被引量:1
  • 3贾永红,李德仁,孙家柄.多源遥感影像数据融合[J].遥感技术与应用,2000,15(1):41-44. 被引量:182
  • 4Brown M.and Lowe D..Recognising Panoramas[J].Computer Vision,2003:1470-1478. 被引量:1
  • 5刘坡,匡纲要.遥感图像的图像镶嵌方法.人工智能及识别技术,2006,. 被引量:1
  • 6Brown L G..A Survey of Image Registration Techniques[J].ACM Computing Surveys,1992,24(4):325-376. 被引量:1
  • 7赵芹,周涛,舒勤.基于特征点的图像配准技术探讨[J].红外技术,2006,28(6):327-330. 被引量:21
  • 8Brown M.,Lowe D.G..Invariant features from scale invariant keypoints[J].The International journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 9Alaa E.Abdel-Hakim,Aly A.Farag.CSIFT:A SIFT Descriptor with Color Invariant Characteristics[C] //Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006:1978-1983. 被引量:1
  • 10Herbert Bay,Tinne Tuvtellars,Luc Van Gool.,SURF:Speeded Up Robust Feature[C] //European Conference On Computer Vision,2006:404-417. 被引量:1

二级参考文献36

  • 1舒丽霞,周成平,彭晓明,丁明跃.基于Hausdorff距离图象配准方法研究[J].中国图象图形学报(A辑),2003,8(12):1412-1417. 被引量:27
  • 2刘卫光,崔江涛,周利华.插值和相位相关的图像亚像素配准方法[J].计算机辅助设计与图形学学报,2005,17(6):1273-1277. 被引量:29
  • 31,Shafer G.A Mathematical Theory of Evidence[R].Princeton N J, Princeton Univ.Press,1979. 被引量:1
  • 42,Luo R C,Kay M G.Multisensor Integration and Fusion in Intelligent Systems[J].IEEE Trans on S M C,1989,19(5):905~912. 被引量:1
  • 53,Conradson K,Nilsson G.Application of Integrated Landsat,Geochemical and Geophysical Data in Mineral Exploration[M].Proc Int Symp on R S Environ 3rd Thematic Conf R S for Exporation Geology,Colorado Springs,Colorado 1984. 被引量:1
  • 64,Yesou H. Merging SEASTA and SPOT Imagery for the Study of Geologic Structure in a Temperate Agricultural Region[J].R S and Environment,1993,43:265~280. 被引量:1
  • 75,Chavez P S Jr,et al.Discriminating Lithologies and Surficial Deposit in the al Hisma Plateau Region of Saudi Arabia with Digitally Combined Landsat MSS and SIR-A Images[J].Proc Nat Conf on Resource Management Application:Energy and Environment,1983,4:22~24. 被引量:1
  • 86,Evans D.Multisensor Classification of Sedimentary Rocks[J].RS of Environment,1988,25:129~144. 被引量:1
  • 97,Daly M C. Applications of Multispectral Radar and Landsat Imagery to Geologic Mapping in Death Valley[R].NASA-J&L Publ. 被引量:1
  • 108,Daily M. Geologic Interpretation from Composited Radar and Landsat Imagery[J].Phot Eng & R S,1979,45(8):1109~1116. 被引量:1

共引文献201

同被引文献158

引证文献17

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部