期刊文献+

自相似河网的降雨-径流响应——一种函数递归迭代算法

Rainfall-Runoff Response in Self-Similar River Networks——a Study of a Recursive Replacement Algorithm of Function
下载PDF
导出
摘要 提出一种函数递归迭代算法,应用于具有分形特征河流的降水-径流响应计算,对2种严格的自相似河网分别导出递归方程;采用这种函数递归迭代算法,用在中国东北辽河小流域上测量的降雨-径流2组数据,分析森林对大流域径流的影响,结果表明,森林对小流域的有利影响在大流域中不仅保持,而且还得到进一步加强。 An approach was proposed for calculating the rainfall-runoff responses in the fractal geometry,and it was established by using a recursive replacement algorithm of function(RRF) to two types of the strict self-similar river networks(SSN).In order to estimating the hydrologic responses,two sets of recursive equations were developed for two types of the SSNs,T1 and T2,respectively.To verify the RRF algorithm,two groups of data measured in the small catchments of Liaohe river in northeast China were used to examine influences of forests on the runoff of large watershed.According to the simulation of RRF,the favourable influences of forests in the small catchment on the runoff are not only maintained,but also further strengthened by the self-similar river networks.
出处 《林业科学》 EI CAS CSCD 北大核心 2010年第12期36-41,共6页 Scientia Silvae Sinicae
基金 中国国家重大基础研究计划项目(2002CB111503) 中国科学院知识创新工程基金(KZCX3-SW-425)项目
关键词 响应函数 递归迭代 自相似 降雨-径流响应 尺度变换 recursive algorithm vespouse function self-similar rainfall-runoff response scale transformation
  • 相关文献

参考文献12

  • 1Hack J T.1957.Studies of longitudinal profiles in virginia and maryland,U.S.Geological Survey Professional Papers. 被引量:1
  • 2Horton R E.1945.Erosional development of streams and their drainage basins:hydrophysical approach to quantitative morphlogy.Geological Society of America Bulletin,56 (3):275-370. 被引量:1
  • 3La Barbara P,Rosso R.1987.Fractal geometry of river networks (abstract).Eos Transaction of American Geophysical Union,68 (44):1276. 被引量:1
  • 4La Barbara P,Rosso R.1989.On the fractal dimention of stream networks.Water Resources Research,25(4):735-741. 被引量:1
  • 5Mandelbrot B B.1977.Fractals:form,chance,and dimension.New York:Freeman. 被引量:1
  • 6Mandelbrot B B.1983.The fractal geometry of nature.New York:Freeman. 被引量:1
  • 7Nikora V I.1988.Fractal properties of some hydrological objects (in Russion).Academy of Science of Moldavian SSR,Kishinev. 被引量:1
  • 8Schuller D J,Rao A R,Jeong G D.2001.Fractal characteristics of danse stream networks.Journal of Hydrology,343:1-16. 被引量:1
  • 9Strabler A N.1952.Hypsometric (area-altitude) analysis of erosional topography.Geological Society of America Bulletin,63:1117-1142. 被引量:1
  • 10Tarboton D G,Bras R L,Rodriguez-Iterbe I.1988.The fractal nature of river networks.Water Resources Research,24 (8):1317-1322. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部