期刊文献+

基于矢量泰勒级数的鲁棒语音识别 被引量:4

Robust Speech Recognition Based on Vector Taylor Series
下载PDF
导出
摘要 矢量泰勒级数是一种有效的抗噪声鲁棒语音识别算法.然而在对数谱域,美尔滤波器组的不同通道之间有较强的相关性,因而难以从含噪语音中准确估计噪声的方差.提出了一种基于矢量泰勒级数的倒谱域特征补偿算法.该算法在倒谱域,用一个高斯混合模型描述语音倒谱特征的分布,通过矢量泰勒级数从含噪语音中估计噪声的均值和方差.实验结果表明,此算法能明显提高语音识别系统的性能,优于基于矢量泰勒级数的对数谱域特征补偿算法. The vector Taylor series(VTS)expansion is an effective approach to noise robust speech recognition.How-ever,in the log-spectral domain,there exist the strong correlations among the different channels of Mel filter bank and thus it is difficult to estimate the noise variance from noisy speech proposes.A feature compensation algorithm in the cepstral domain based on vector Taylor series was proposed.In this algorithm,the distribution of speech cepstral features was represented by a Gaussian mixture model(GMM),and the mean and variance of noise were estimated from noisy speech by the VTS approximation.The experimental results show that the proposed algorithm can signifi-cantly improve the performance of speech recognition system,and outperforms the VTS-based feature compensation method in the log-spectral domain.
作者 吕勇 吴镇扬
出处 《天津大学学报》 EI CAS CSCD 北大核心 2011年第3期261-265,共5页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60971098)
关键词 特征补偿 矢量泰勒级数 噪声估计 鲁棒语音识别 feature compensation vector Taylor series noise estimation robust speech recognition
  • 相关文献

参考文献15

  • 1Atal B. Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification [J]. Journal of the Acoustical Society of America, 1974,55 (6) : 1304-1312. 被引量:1
  • 2Erell A,Weintraub M. Filterbank-energy estimation using mixture and Markov models for recognition of noisy speech [J]. IEEE Trans on Speech and Audio Processing, 1993,1 (1) :68-76. 被引量:1
  • 3Acero A. Acoustical and Environmental Robustness in Automatic Speech Recognition [M]. Norwell:Kluwer Academic Publisher, 1993. 被引量:1
  • 4Sasou A,Asano F,Nakamura S,et al. HMM-based noiserobust feature compensation [J]. Speech Communication, 2006,48(9) :1100-1111. 被引量:1
  • 5Kim W,Hansen J H L. Feature compensation in the cepstral domain employing model combination[J]. Speech Communication, 2009,51 (2) : 83-96. 被引量:1
  • 6吕勇,吴镇扬.基于隐马尔可夫模型与并行模型组合的特征补偿算法[J].东南大学学报(自然科学版),2009,39(5):889-893. 被引量:4
  • 7Lu Yong, Wu Zhenyang. Maximum likelihood model adaptation using piecewise linear transformation for ro- bust speech recognition [C]//IEEE International Sympo sium on Consumer Electronics. Kyoto,Japan,2009 : 608- 610. 被引量:1
  • 8Gales M J F. Model-Based Techniques for Noise Robust Speech Recognition[D]. Cambridge: Cambridge University, 1995. 被引量:1
  • 9Moreno P J,Raj B,Stern R M. A vector Taylor series approach for environment-independent speech recognition [C]//IEEE Int Conf on Acoustics ,Speech ,and Signal Processing. Atlanta,USA, 1996 : 733-736. 被引量:1
  • 10Moreno P J. Speech Recognition in Noisy Environments[D]. Pittsburgh: Carnegie Mellon University, 1996. 被引量:1

二级参考文献11

  • 1孙暐,吴镇扬.基于独立感知理论的鲁棒语音识别算法[J].东南大学学报(自然科学版),2005,35(4):506-509. 被引量:2
  • 2赵蕤,王作英.语音识别中信道和噪音的联合补偿[J].声学学报,2006,31(5):466-470. 被引量:11
  • 3Nasersharif B, Akbari A. SNR-dependent compression of enhanced Mel sub-band energies for compensation of noise effects on MFCC features [J ]. Pattern Recognition Letters, 2007,28( 11 ) : 1320 - 1326. 被引量:1
  • 4Cui X, Alwan A. Noise robust speech recognition using feature compensation based on polynomial regression of utterance SNR [ J ]. IEEE Transactions on Speech and Audio Processing, 2005, 13(6) : 1161 -1172. 被引量:1
  • 5Barreaud V, Illina I, Fohr D. On-line stochastic matching compensation for non-stationary noise [ J ]. Computer Speech and Language, 2008, 22 ( 3 ) : 207 - 229. 被引量:1
  • 6Moreno P J. Speech recognition in noisy environments [ D]. Pittsburgh, Pennsylvania, USA: Carnegie Mellon University, 1996: 79 - 126. 被引量:1
  • 7Kim W, Kwon O, Ko H. PCMM-based feature compensation schemes using model interpolation and mixture sharing [ C ]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, Canada, 2004:989-992. 被引量:1
  • 8Kim W, Hansen J H L. Feature compensation in the cepstral domain employing model combination [ J ]. Speech Communication, 2009, 51 (2) : 83 - 96. 被引量:1
  • 9Sasou A, Asano F, Nakamura S, et al. HMM-based noise-robust feature compensation [ J]. Speech Communication, 2006, 48 (9) : 1100 - 1111. 被引量:1
  • 10Gales M J F, Young S J. Robust speech recognition in additive and convolutional noise using parallel model combination [ J ]. Computer Speech and Language, 1995, 9(4): 289-307. 被引量:1

共引文献3

同被引文献24

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部