期刊文献+

基于BP神经网络的沉积物(生物膜)主要活性组分吸附Cu和Zn的交互作用

Interaction among Active Constituents of Sediments(SSs/NSCSs) on the Adsorption of Cu and Zn Based on BP Artificial Neural Network
下载PDF
导出
摘要 利用MATLAB建立沉积物(生物膜)主要活性组分(铁氧化物、锰氧化物和有机质)吸附Cu/Zn过程的BP神经网络模型,模型训练集均方差、训练集偏差、验证集均方差和测试集偏差分别为0.002 2(0.001 5),1.542 9×10-6(2.648 4×10-6),0.087 1(0.069 2)和0.018 7(0.035 7).所建模型能够反映沉积物(生物膜)主要活性组分含量梯度变化时吸附Cu/Zn的规律,并且初步揭示了沉积物(生物膜)主要活性组分吸附Cu/Zn时的交互作用.沉积物(生物膜)组分含量变化与其吸附Cu/Zn的能力呈显著反比关系时,交互作用的影响度最大为1 420.30%/54.30%(沉积物)和79.27%/703.31%(生物膜).沉积物(生物膜)吸附Cu/Zn时,与对应原样相比交互作用的促进作用影响度最大为386.14%/30.08%(沉积物)和66.17%/47.92%(生物膜). A BP artificial neural network(ANN) model was developed via MATLAB to estimate Cu/Zn adsorption in the surficial sediments(SSs) and natural surface coating samples(NSCSs),by which the mean square error of training set,the deviation of training set,the mean square error of verification set,and the deviation of test set are 0.002 2(0.001 5),1.542 9×10-6(2.648 4×10-6),0.087 1(0.069 2),and 0.018 7(0.035 7),respectively.The predicted results of the BP ANN model established not only reveal the law of the adsorption of Cu/Zn by the active constituents of SSs(NSCSs) changed in grade,but also highlight the significant interaction among the active constituents in the SSs(NSCSs) on the adsorption of Cu/Zn preliminary.The adsorption capacity of Cu/Zn increases with the decrease in content of active constituents,and the maximum ratios between the adsorption variation value of the changed SSs(NSCSs) and their original adsorption value are 1 420.30%/54.30%(SSs) and 79.27%/703.31%(NSCSs) respectively;the interaction among the active constituents in SSs(NSCSs) promote Cu/Zn adsorption,and the maximum ratios between the adsorption variation value of the changed SSs(NSCSs) and their original adsorption value are 386.14%/30.08%(SSs) and 66.17%/47.92%(NSCSs) respectively.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期346-352,共7页 Journal of Jilin University:Science Edition
基金 国家重点基础研究发展计划973项目基金(批准号:2004CB3418501)
关键词 沉积物 重金属 吸附 BP神经网络 交互作用 surficial sediments heavy metals adsorption BP artificial neural network interaction
  • 相关文献

参考文献15

二级参考文献74

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部