期刊文献+

一类自适应扩散方程在乘性去噪中的应用 被引量:2

Application of a Class of Adaptive Diffusion Equation to Multiplicative Denoising
下载PDF
导出
摘要 提出一类自适应扩散方程并将其相应的模型用于乘性去噪,该类模型能针对乘性噪声的特点,根据局部梯度信息自适应地选择扩散模式:其扩散速度和噪声大小成正比,没有噪声的区域不扩散,同时结合了热方程各向同性扩散和全变差流各向异性扩散的特点.理论分析和实验结果表明,该类模型能自适应地光滑区域内部,增强边界,避免阶梯效应. The authors presented a class of adaptive diffusion equations which provide a model for multiplicative denoising.This type of diffusion varies according the local gradient information,adaptively aiming at multiplicative noise.The diffusion speed is proportional to noisy level and there is no diffusion in the domains with no noise.The diffusion result from the proposed model is a combination of isotropic diffusion based on heat equation and anisotropic diffusion based on total variation.Theoretical analysis and experimental results illustrate the effectiveness of the model in removing noise and enhancing edges while avoiding the staircasing effect.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期164-168,共5页 Journal of Jilin University:Science Edition
基金 中国博士后科学基金(批准号:20100481229) 中央高校基本科研业务费专项基金
关键词 自适应 乘性去噪 阶梯效应 扩散方程 adaptive multiplicative denoising staircase effect diffusion equation
  • 相关文献

参考文献15

  • 1Oliver C,Quegan S.Understanding Synthetic Aperture Radar Images[M].Norwood,MA:Artech House,1998. 被引量:1
  • 2Rudin L,Lions P,Osher S.Multiplicative Denoising and Deblurring:Theory and Algorithms[M].Geometric Level Set Methods in Imaging,Vision,and Graphics.New York:Springer,2003:103-119. 被引量:1
  • 3Aubert G,Aujol J.A Variational Approach to Remove Multiplicative Noise[J].J Applied Mathematics,2008,68 (4):925-946. 被引量:1
  • 4SHI Jia-ning,Osher S.A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model[J].SIAM Journal on Imaging Sciences,2008,1 (3):294-321. 被引量:1
  • 5Chan T F,Golub G H,Mulet P.A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration[J].SIAM J Sci Comput,1999,20(6):1964-1977. 被引量:1
  • 6Rudin L I,Osher S,Fatemi E.Nonlinear Total Variation Based Noise Removal Algorithms[J].Physica D,1992,60:259-268. 被引量:1
  • 7Vogel C R,Oman M E.Iterative Methods for Total Variation Denoising[J].SIAM J Sci Comput,1996,17(1):227-238. 被引量:1
  • 8Lysaker M,Lundervold A,Tai X C.Noise Removal Using Fourth-Order Partial Differential Equation with Applications to Medical Magnetic Resonance Images in Space and Time[J].IEEE Tran Image Process,2003,12(12):1579-1590. 被引量:1
  • 9Chan T F,Marquina A,Mulet P.High-Order Total Variation Based Image Restoration[J].SIAM J Sci Comput,2000,22(2):503-516. 被引量:1
  • 10YOU Yu-li,Kaveh M.Fourth-order Partial Differential Equations for Noise Removal[J].IEEE Tran Image Process,2000,9(10):1723-1730. 被引量:1

同被引文献33

  • 1焦卫东,杨世锡,钱苏翔,严拱标.乘性噪声消除的同态变换盲源分离算法[J].浙江大学学报(工学版),2006,40(4):581-584. 被引量:13
  • 2ARENA P,CAPONETTO R,FORTUNA L,et al.Nonlinear non-integer order circuits and systems an introduction[M].Singapore:World Scien-tific,2000. 被引量:1
  • 3PODLUBNY I.Fractional differential equations[M].New York:Academic Press,1999. 被引量:1
  • 4BAGLEY R,CALICO R.Fractional order state equations for the control of viscoelastically damped structures[J].Guid Contr Dyn,1991,14:304-11. 被引量:1
  • 5SUN H,ABDELWAHED A,ONARAL B.Linear approximation for transfer function with a pole of fractional order[J].IEEE Trans Auto Contr,1984,29:441-4. 被引量:1
  • 6ICHISE M,NAGAYANAGI Y,KOJIMA T.An analog simulation of non-integer order transfer functions for analysis of electrode process[J].Elec-troanal Chem,1971,33:253-65. 被引量:1
  • 7HEAVISIDE O.Electromagnetic theory[M].New York:Chelsea,1971. 被引量:1
  • 8LASKIN N.Fractional market dynamics[J].Physica A,2000,287:482-92. 被引量:1
  • 9LI C P,PENG G J.Chaos in Chen’s system with a fractional order[J].Chaos,Solitons&Fractals,2004,20:443-50. 被引量:1
  • 10MOHAMMAD S,MOHAMMAD H.A necessary condition for double scroll attractor existence in fractional-order systems[J].Physics Letters A,2007(2):102-113. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部