期刊文献+

基于NSCT变换的红外空中小目标检测方法研究 被引量:1

Research on Infrared Small Target Detecting in the Sky in NSCT Domain
下载PDF
导出
摘要 针对空中远距离红外小目标检测的实际问题,提出了一种基于非抽样轮廓波变换的检测算法。首先利用非抽样轮廓波变换的优良性质,通过分析噪声系数、背景边缘系数和目标系数在尺度间的不同特性,计算各个信号在尺度间的相关系数并归一化。接下来,按照自适应阈值法抑制噪声和背景边缘系数,然后通过反变换得到抑制背景增强目标的图像。最后,结合目标面积信息选择适当阈值,对重构图像进行分割,生成单帧检测结果并进一步利用帧间目标位置的相关性完成小目标检测过程。试验结果表明,提出的算法能够准确地检测目标。相对于通常的小目标检测算法,本算法在背景抑制方面具有一定的优势,能够获得相对较高的信噪比。 In order to solve the practical problem of the infrared small target's detecting in the sky,a detecting algorithm based on the NSCT(nonsubsampled contourlet transform) was proposed.Firstly,taking advantage of the excellent property of the transform,this algorithm analyzed the different property of the NSCT coefficients of noise,background edge and signal,then computed the normalized correlation coefficients between scale for the transform coefficients.Subsequently,according to the adaptive method of threshold,the coefficients of background edge and noise were suppressed and then the image which includes the enhanced target was acquired by the inverse transform.In the end,taking the target area into account,the reconstructed image was partitioned and the final detecting result was acquired by considering the position correlation of the target between frames.Experimental results show that the method given by this paper can detect small target accurately.Compared with some traditional method,it has certain advantage in background suppressing and can acquire high SNR(signal noise ratio) value.
出处 《计算机科学》 CSCD 北大核心 2011年第4期292-294,298,共4页 Computer Science
关键词 红外小目标 非抽样轮廓波变换 尺度间相关系数 背景抑制 信噪比 Infrared small target Nonsubsampled contourlet transform Correlation coefficient between scale Background suppression Signal noise ratio
  • 相关文献

参考文献13

二级参考文献59

  • 1张淑艳.基于平移不变量的摩擦焊检测信号降噪方法[J].系统仿真学报,2005,17(11):2721-2723. 被引量:8
  • 2彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 3易文娟,郁梅,蒋刚毅.Contourlet:一种有效的方向多尺度变换分析方法[J].计算机应用研究,2006,23(9):18-22. 被引量:32
  • 4吴云洁,刘正华,赵媛媛.控制系统中的混沌现象研究(英文)[J].系统仿真学报,2006,18(11):3168-3171. 被引量:6
  • 5Salari F, Ling Z. Texture segmentation using hierarchical wavelet decomposition [ J ]. Pattern Recognition, 1995,28 ( 7 ) : 1819-1824. 被引量:1
  • 6Lu C S, Cheng P C, Chen C F. Unsupervised texture segmentation via wavelet transform[J]. Pattern Recognition,1996,30(5) :729-742. 被引量:1
  • 7Donoho Minh N, Vetterli Martin. The contourlet transform: An efficient directional multiresolution image representation [ J ]. IEEE Transactions on Image Processing, 2005, 14( 12): 2091-2106. 被引量:1
  • 8Cunha Arthur Lda, Zhou Jian-ping, Donoho Minh N. The nonsubsampled contourlet transform: theory,design, and applications [ J ] . IEEE Transactions on Image Processing, 2006, 15 ( 10 ) : 3089-3101. 被引量:1
  • 9Blostein S D,Huang T S.Detection of small moving objects in image sequences using multistage hypothesis testing[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].1988.1068—1071. 被引量:1
  • 10Bronskill J F,Hepburn J S A,Au W K.A knowledge-based approach to the detection,tracking and classification of target formations in infrared image sequences[A].Proc of IEEE International Conference on Computer Vision and Pattern Recognition[C].1989.153—158. 被引量:1

共引文献130

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部