期刊文献+

基于SVM期望间隔的多标签分类的主动学习 被引量:7

Active Learning for Multi-label Classification Based on SVM's Expect Margin
下载PDF
导出
摘要 分类是数据挖掘领域研究中的核心技术之一。得到一个性能良好的分类器需要大量的训练样本,而对样本进行标记是一个十分消耗资源的过程,对多标签样本进行标记就更加困难。为了尽可能降低标记样本的成本,需要找出最能代表类别信息的样本。在基于SVM的分类方法中,分类器间隔越大,分类的精度就会越差。提出了一种基于期望间隔的主动学习方法,即依据当前分类器,选择最快缩小分类间隔的样本。通过实验证明,基于期望间隔的学习策略比基于决策值以及基于后验概率的策略有着更好的学习效果。 Classification is one of the key techniques of data mining.It requires a large number of training samples to obtain a favorable classifier,but it is resource-consuming to create label for each sample,it is even more so for multi-label samples.In order to reduce costs,it should find the most informative samples which can represent the classes.The classifiers which are based on SVM,the larger margin,the classifier's accuracy will be poorer.This paper proposed an active learning method based on SVM's expect margin which relies on current classifier,select samples that can reduce classifier's margin fastest.The experimental results show that the method based on expect margin outperforms than other active learning strategy based on decision value and posterior probability strategy.
出处 《计算机科学》 CSCD 北大核心 2011年第4期230-232,266,共4页 Computer Science
关键词 多标签 后验概率 期望间隔 主动学习 支持向量机 Multi-label Posterior probability Expect margin Active learning SVM
  • 相关文献

参考文献11

  • 1Yang Bisan, Jiao-Tao, Wang Teng-jiao, et al. Effective Multi-Label Active Learning for Text Classification[C].//KDD' 09: Proeeedings of the 15^th ACM SIGKDD international conference on Knowledge discovery and data mining. Paris, 2009:917-926. 被引量:1
  • 2袁勋,吴秀清,洪日昌,宋彦,华先胜.基于主动学习SVM分类器的视频分类[J].中国科学技术大学学报,2009,39(5):473-478. 被引量:21
  • 3宋鑫颖 周志逵.一种基于SVM的主动学习文本分类方法.计算机科学,2006,:288-290. 被引量:2
  • 4Li Xu-chun, Wang Lei, Sung E. Multi-Label SVM Active Learning for Image Classification[C].//International Conference on Image Processing. Lion, 2004: 2207-2210. 被引量:1
  • 5Brinker K. On Active Learning in Multi-label Clarification [ M ].// Myra Spiliopoulou, Rudolf Kruse, Christian t3orgelt, et al. "From Data and Information Analysis to Know/edge Engineering" of Book Series "Studies in Classification, Data Analysis, and Knowledge Organization". Berlin Heidelberg: Springer, 2006: 206-213. 被引量:1
  • 6Singh M, Curran E, Cunningham P. Active Learning for Multilabel Image Annotation[C].//The 19th Irish Conference on Artificial Intelligence and Cognitive Science. Cork, Ireland, 2008: 173-182. 被引量:1
  • 7Joshi A J, Porikli F, Papanikolopoulos N. Multi-Class Active Learning for Image Classification[ C].//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, 2009 : 2372-2379. 被引量:1
  • 8Lin Hsuan-tien, Lin Chih-jen, Weng R C. A Note on Platt's Probabilistic Outputs for Support Vector Machines[J]. Journal of Machine Learning Research, 2007,68(3) : 267-276. 被引量:1
  • 9Tong S, Koller D. Support Vector Machine Active Learning with Applications to Text Classification [J]. Journal of Machine Learning Research, 2001 : 45-66. 被引量:1
  • 10He Jing-rui, Li Ming-jing, Zhang Hong-jiang, et al. Mean Version Space: a New Active Learning Method for Content-Based Image Retrieval[C].//Proceeding of the ACM SIGMM International Workshop on Multimedia Information Retrieval(MIR) at the International Multimedia Conference. 2004:15-22. 被引量:1

二级参考文献16

  • 1Tong S. Active learning: theory and applications[D]. Ph. D. dissertation, Stanford University, 2001. 被引量:1
  • 2Brinker K. On multiclass active learning with support vector machines [C]// Proceedings of European Conference on Artificial Intelligence. 2004: 969-970. 被引量:1
  • 3Yan R, Yang J, Hauptmann A. Automatically labeling video data using multi-class active learning [C]// Proceedings of the 9th IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2003, 1: 516-523. 被引量:1
  • 4Zhang H J, Kankanhallli A, Smoliar S W. Automatic partitioning of full-motion video [J]. Multimedia Systems, 1993, 1(1). pp: 10-28. 被引量:1
  • 5Lan D J, Ma Y F, Zhang H J. A novel motion-based representation for video mining[C]// Proceedings of IEEE International Conference on Multimedia & Expo. Washington: IEEE Computer Society, 2003: 469-472. 被引量:1
  • 6Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998. 被引量:1
  • 7Wu T F, Lin C H, Weng R C. Probability estimates for multi-class classification by pairwise coupling[J]. The Journal of Machine Learning Research. 2004, 5: 975-1005. 被引量:1
  • 8Lin H T, Lin C J, Weng R C. A note on Platt's probabilistic outputs for support vector machines[J]. Machine Learning, 2007, 68(3):267-276. 被引量:1
  • 9Osuna E, Freund R, Girosi K An improved training algorithm for support vector machines[C]//Proceedings of IEEE Workshop on Neural Networks for Signal Processing Amelia Island, USA: IEEE Press, 1997: 276-285. 被引量:1
  • 10Truong B T, Venkatesh S, Dorai C. Automatic genre identification for content-based video categorization [C]// 15th International Conference on Pattern Recognition. Washington: IEEE Computer Society, 2000, 4: 230-233. 被引量:1

共引文献21

同被引文献56

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部