期刊文献+

基于属性子空间的孤立点内涵知识挖掘

Finding Intentional Knowledge of Outliers Based on Attribute Subspace
下载PDF
导出
摘要 孤立点通常都包含着重要的信息,挖掘出孤立点的内涵知识可以帮助用户更好地认知数据。通过给出的孤立点的原因属性子空间及其孤立度和孤立点的相似度等概念,提出了一个基于属性子空间的孤立点内涵知识挖掘算法,得到了每个孤立点的原因属性集,并结合聚类的思想把孤立点按照其相似性特征进行了分类,使每一类中的所有孤立点在一定精度下都具有相同的原因属性集。实验结果表明该算法是有效和实用的,且易用性较强。 Outliers usually contain important information,it can help improving the users' understanding of the data.New definitions of cause attribute subspace of outliers,degree of cause attribute subspace and similarity of outliers were given,and then an algorithm for finding intentional knowledge of outliers based on attribute subspace was proposed,the approach can obtain the cause attributes set of every outlier.Then the outliers were classified by their similarity combined with the thinking of clustering,all the outliers of every class have the same cause attributes set under certain precision.The experiment results show that the algorithm is effective and practical,and more ease of use.
出处 《计算机科学》 CSCD 北大核心 2011年第3期199-202,共4页 Computer Science
基金 重庆市科技攻关资金项目(CSTC 2009AB2049CSTC 2009AC2068)资助
关键词 孤立点 属性子空间 孤立点相似度 内涵知识 Outliers Attribute subspace Outliers similarity Intentional knowledge
  • 相关文献

参考文献7

  • 1Han Jia-wei, Kamber M. Data Mining.. Concepts and Techniques [M]. Academic Press,2001. 被引量:1
  • 2Ramaswamy S, Rastogi R, Shim K. Efficient Algorithms for Mining Outliers from Large Data Sets[C]//Proc of the ACM SIGMOD International Conference on Management of Data. [S. 1. ]: ACM Press, 2000. 被引量:1
  • 3Knorr E, Ng R. Finding Intensional Knowledge of Distance based Outliers[C]//Proc. of the 25th VLDB Conference. Scotland: Edinburgh, 1999 : 211-222. 被引量:1
  • 4Chen Z,Tang J, Fu A. Modeling and efficient mining of intentional knowledge of outliers[C]//Proc of the 7th lnt'l Database Engineering and Applications Symposium. I.os Alamitos, CA: IEEE Computer Society Press, 2003 : 1-10. 被引量:1
  • 5Papadimitriou S,Kitagawa H, Gibbons P B. IXDCI: Fast outlier detection using the local correlation integral[C]//Proc, of the 19th Int' 1 Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 2003 : 315-326. 被引量:1
  • 6王越,刘亚辉,徐传运.孤立点用户意义分析在质量管理中的应用[J].计算机应用,2009,29(11):3077-3079. 被引量:2
  • 7Angiulli F, Basta S,Pizzuti C. Distance-Based Detection and Prediction of Outliers[J]. IEEE Transactions on Knowledge and Data Engineering,2006,18(2):145-160. 被引量:1

二级参考文献7

  • 1陆声链,林士敏.基于距离的孤立点检测及其应用[J].计算机与数字工程,2004,32(5):94-97. 被引量:23
  • 2黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 3KNORR E M, NG R T. Algorithms for mining distance-based outliers in large datasets [ C]// Proceedings of the 24rd International Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann, 1998:392-403. 被引量:1
  • 4JIANG SHENG-YI, LI QINGH-HA, LI KEN-H, et al. GLOF: A new approach for mining local outlier [ C]//2003 International Conference on Machine Learning and Cybernetics. Washington, DC: IEEE Press, 2003, 1:157-162. 被引量:1
  • 5KNORR E M, NG R T, TUCAKOV V. Distance-based outliers: Algorithms and applications [ J]. The International Journal on Very Large Data Bases, 2000, 8(3/4): 237-253. 被引量:1
  • 6HAN J, KAMBER M. Data mining: Concepts and techniques [ M]. New York: Academic Press, 2001. 被引量:1
  • 7KNORR E, NG R. Finding intensional knowledge of distance-based outliers [ C]//Proceedings of the 25th Intematianal Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann, 1999: 211-222. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部