期刊文献+

基于神经网络的增强型自适应滑模控制策略研究 被引量:1

An Enhanced Adaptive Sliding Mode Control Strategy Based on Neural Network
下载PDF
导出
摘要 针对存在显著未知惯量动态的感应电机伺服系统鲁棒跟踪控制问题,提出一种基于神经网络的增强型自适应滑模控制(EASMC)策略,根据实时控制的需要设计了可灵活配置的通用型三层前馈神经网络,并采用结构化补偿方式以充分利用其描述能力;以权值伪边界估计为基础,将不连续投影修正引入权值自适应律以实现权值估计误差有界;构造了基于改进型边界估计方法的自适应开关控制用于补偿包含重建误差、泰勒序列高阶尾项、外部扰动等在内的综合等价扰动项。仿真结果表明,该文提出的控制策略能较好地实现对未知惯量动态的拟合和补偿,有效改善了伺服系统的跟踪性能。 This paper studied the precision robust tracking control of induction motor servo systems which were subject to significant unknown inertia dynamic,then proposed a novel enhanced adaptive sliding mode control(EASMC) based on neural networks.A universal 3-layer feedforward neural network topology was designed to achieve better approximation in realtime applications,and the control scheme using structural compensation was established.The boundness of estimation error of all weights was guaranteed by using the modified adaption laws based on discontinuous projection,moreover,designed an improved adaptive switching control to confront the lumped equivalent disturbance,which was composed of reconstruction error,higher-order-tails of Taylor expansion and external disturbances.Simulation results show that the proposed method can approximate and compensate for inertia dynamic,which improves the performance of servo systems effectively.
出处 《微电机》 北大核心 2011年第3期51-57,共7页 Micromotors
关键词 自适应滑模控制 神经网络 惯量动态 adaptive sliding mode control neural network inertia dynamic
  • 相关文献

参考文献10

  • 1Dandil B. Fuzzy Neural Network IP Controller for Robust Position Control of Induction Motor Drive[J]. Expert Systems with Applications. 2009, 36(3) : 4528 -4534. 被引量:1
  • 2Yildirim S. Design of a Proposed Neural Network Control System for Trajectory Controlling of Walking Robots [ J ]. Simulation Modelling Practice and Theory, 2008, 16(3) : 368 -378. 被引量:1
  • 3Park B. S. , Yoo S. J. , Park J. B. et al. Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots with Model Uncertainty [ J ]. IEEE Transactions on Control Systems Technology, 2009, 17(1) : 207 -214. 被引量:1
  • 4Shen P. H. , Lin F. J. Intelligent Backstepping Sliding - mode Control Using RBFN for Two - axis Motion Control System [ C ]. lEE Proc. -Electr. PowerAppl., 2005, 152(5): 1321-1342. 被引量:1
  • 5Leu Y. G. , Wang W. Y. , Li I. H. RGA - based on - line Tuning of BMF Fuzzy - neural Networks for Adaptive Control of Uncertain Nonlinear Systems [ J ]. Neurocomputing, 2009, 72 ( 10 ) : 2636 2642. 被引量:1
  • 6Cheng C. H. , Shu S. L. Application of GA - based Neural Network for Attitude Control of a Satellite [ M ]. Aerospace Science and Technology, 2010. 被引量:1
  • 7Wai R. J. , Tu C. H. Design of Total Sliding - mode - based Genetic Algorithm Control for Hybrid Resonant - driven Linear Piezoelectric Ceramic Motor[ J]. IEEE Trans. Power Electron. , 2007, 22 (2) : 563 - 575. 被引量:1
  • 8Wai R. J. , Tu C. H. Development of Lyapunov - based Genetic Algorithm Control for Linear Piezoelectric Ceramic Motor Drive [ J ]. IEEE Transactions on Industrial Electronics, 2007, 54 (5) : 2566 - 2582. 被引量:1
  • 9Omidvar O. , Elliott D. L. Neural Systems for Control[ M]. San Diego: Academic Press, 1997 : 149 - 155. 被引量:1
  • 10Loannou P. , Fidan B. Adaptive Control Tutorial [ M ]. Philadelphia : Society for Industrial and Applied Mathematics, 2006 : 52 - 63. 被引量:1

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部