期刊文献+

简化正交归一约束的自适应噪声子空间估计算法

Simplified Orthonormalization Constraint Adaptive Noise Subspace Estimation Algorithms
原文传递
导出
摘要 为避免MUSIC算法的特征分解过程,提出一种噪声子空间的自适应估计算法,能够估计整个噪声子空间.该算法基于正交归一化约束的最小均方(LMS)算法,但对正交归一约束过程进行了简化,较之显式正交归一化约束的LMS算法,简化了运算过程,适合实时计算与工程实现.噪声子空间估计以迭代的方式进行,适合应用于运动信号源的跟踪.仿真结果显示算法具有很好的空间谱估计性能和DOA跟踪性能. Most of the computational complexities of MUSIC algorithms are centered in eigendecomposition, to avoid eigendecomposition, a novel adaptive noise subspace estimation algorithm is provided.The method is based on orthonormalization constrained LMS algorithm, but the orthonormalization operation is symplified and the computational complexities is reduced greatly in contrast to explicit orthonormalization operation. The algorithm suits egnieering implementation and work iteratively which can be used for real-time DOA tracking. The simulation analysis indicates that this algorithm is active.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第6期155-162,共8页 Mathematics in Practice and Theory
关键词 特征子空间估计 MUSIC 自适应算法 DOA跟踪 eigensubspace estimation MUSIC adaptive algorithm DOA tracking
  • 相关文献

参考文献10

  • 1Schmidt R o. Multiple emitter location and signal parameter estimation[C]//Proc. RADC Spectral Estimation Workshop, Rome, NY, 1979: 243-258. 被引量:1
  • 2Paulraj, Roy R H. ESPRIT: estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans.ASSP, 1988, 33(6): 527-532. 被引量:1
  • 3Paine A S, Qinetiq Malvern. Fast MUSIC for large 2-D element digitized phased array radar[C]//Pro ceedings of the international radar conference, 2003: 200-205. 被引量:1
  • 4Weiwei Cui, Zhigang Cao. Fast Source Eocation Method Using Anti-reverberant Searching Space Pre-estimation[C]//TENCON 2006. 2006 IEEE Region 10 Conference. Hongkong, 2006: 1-4. 被引量:1
  • 5Mohammed A. Hasan. Fast rational approximation algorithms of signal and noise subspaces[C]//Proc eedings of the I$$PA',2001. Kualalumour, 1: 124-127. 被引量:1
  • 6Thompson P A.An adaptive spectral analysis technique for unbiased frequency estimation in the present of white noise[C]///Proc.13th Asilomar Conf Circuits, Syst Comput,198(}: 2-6. 被引量:1
  • 7Erkki Oja. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix[J]. Journal of Mathematic Analysis and Applicalons, 1985, 33(1): 69-84. 被引量:1
  • 8Sarkar T K, Dianat S A, Chen H, Brule J D. Adaptive spectral estimation by the conjugate gradient method[J]. IEEE Trans on ASSP, 1986, 34(2): 272-284. 被引量:1
  • 9Lei Xu, Erkki Oja, Ching Y S. Modified hebbian learning for curve and surface fitting[J]. Neural Networks, 1992, 5: 441-457. 被引量:1
  • 10Erkki Oja.A Simplified Neuron Model as a Principal Component Analyzer.Journal of Mathmatic Biology, 1982, 15: 267-273. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部