期刊文献+

三维数据集中基于位运算的挖掘算法

Bitwise-based Mining Algorithm in 3D Dataset
下载PDF
导出
摘要 提出一种基于位处理技术的三维数据挖掘算法——BD-Peeler算法。该算法利用计算机每次处理32位数据的特性,将三维数据集按位存储,最大限度地提高每次运算处理数据集的数据量。实验结果表明,与Data-Peeler算法相比,该算法可以更快速有效地挖掘出三维数据集中的闭频繁项集。 In order to quickly and effectively mine the 3D data set of the closed frequent itemsets,the paper proposes a data mining algorithm based on bitwise-based processing technology for 3D dataset——Bitwise-Data-Peeler(BD-Peeler).The algorithm makes the best use of the computer processing 32-bit data each time.The 3D data sets are stored by bits,so that it can increase the computational data each time in the 3D dataset.Experimental results show that it can quickly and efficiently mine the 3D data set of the closed frequent itemsets.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第6期61-64,共4页 Computer Engineering
关键词 数据挖掘 位运算 三维 约束 闭频繁项集 data mining bitwise 3D constraint closed frequent itemsets
  • 相关文献

参考文献8

  • 1Besson J, Robardet C, Boulicaut J E et al. Constraint-base Formal Concept Mining and Its Application to Microarray Data Analysis[J ]. Intelligent Dala Analysis, 2005, 9(1): 59-82. 被引量:1
  • 2才科扎西,黄景廉.基于前缀树的高效频繁项集挖掘算法[J].计算机工程,2010,36(4):42-44. 被引量:5
  • 3胡明,唐培丽,许建潮.基于OLAP的多维关联规则挖掘研究[J].东北师大学报(自然科学版),2007,39(4):54-59. 被引量:2
  • 4陈晓红,马亮.基于多维数据的关联规则算法[J].系统工程,2005,23(5):103-105. 被引量:4
  • 5Ji Liping, Tan K L, Anthony K H. Mining Frequent Closed Cubes in 3D Data Sets[C]//Proc. of the 32nd International Conference on Very Large Data Bases. Seoul, Korea: [s. n.], 2006: 811-822. 被引量:1
  • 6Jaschke R, Hotho A, Schmitz C, et al. TR1AS: An Algorithm for Mining Iceberg Tri-lattices[C]//Proc. of the 6th International Conference on Data Mining. Hong Kong, China: [s. n.], 2006: 907-911. 被引量:1
  • 7Cerf L, Besson J, Robardet C, et al. Data-peeler: Constraion-based Closed Pattenl Mining in N-Ary Relations[C]//Proc. of the 8th Society for Industrial and Applied Mathematics International Conference on Data Mining. Atlanta, Georgia, USA: [s. n.], 2008: 37-48. 被引量:1
  • 8Besson J, Cerf L, Thevenoux R, et al. Tackling Closed Pattern Relevancy in N-Ary Relations[C]//Proc. of the 1st Workshop on Mining Multidimensional Data. Antwerp, Belgium: [s. n.], 2008: 2-16. 被引量:1

二级参考文献24

  • 1陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 2沈国强,覃征.一种新的多维关联规则挖掘算法[J].小型微型计算机系统,2006,27(2):291-294. 被引量:18
  • 3辛燕,鞠时光.基于多维数据模型的交叉层关联规则挖掘[J].小型微型计算机系统,2006,27(4):681-686. 被引量:4
  • 4伊卫国,卫金茂,王名扬.关联规则挖掘方法的改进[J].东北师大学报(自然科学版),2006,38(2):15-18. 被引量:5
  • 5Lee Wan-Jui, Jiang Jung-Yi, Lee Shie-Jue. Mining Fuzzy Periodic Association Rules[J]. Data Knowledge Engineering, 2008, 65(3): 442-462. 被引量:1
  • 6Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of the ACM SIGMOD'93. Washington D. C, USA: ACM Press, 1993. 被引量:1
  • 7Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the ACM SIGMOD'00. Dallas, TX, USA: ACM Press, 2000. 被引量:1
  • 8Zaiane R. Incremental Mining of Frequent Patterns Without Candidate Generation or Support Constraint[C]//Proc. of the 7th Int'l Conf. on Database Engineering and Applications. [S. I.]:IEEE Press, 2003. 被引量:1
  • 9康塔尼克著 闪四清译.数据挖掘:概念、模型、方法和算法 [M].北京:清华大学出版社,2003.. 被引量:1
  • 10Shafer J C,Agrawal R,Mehta M. SPRINT:a scalable parallel classifier for data mining[J]. Proc of the 22nd Int Conf on Very Large Databases[C]. Mumbai(Bombay). India,1996. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部