期刊文献+

基于高光谱图像技术的油菜籽品种鉴别方法研究 被引量:23

Identification of rapeseed varieties based on hyperspectral imagery
下载PDF
导出
摘要 提出了一种采用高光谱图像技术结合人工神经网络对油菜籽品种进行鉴别的方法.采集多个品种油菜籽400~1000cm范围的高光谱图像数据,通过主成分分析法(PCA)获得主成分图像,确定特征波长;采用基于灰度直方图和灰度共生矩阵联合的统计方法从特征图像中提取纹理特征参数,应用人工神经网络建立油菜籽品种鉴别模型.结果表明,模型训练时品种判别率为93.75%,预测的判别率为91.67%.说明高光谱图像技术对油菜籽品种具有较好的分类和鉴别作用. Identification of rapeseed varieties by using hyperspectral imaging technique combined with artificial neural network (ANN) was proposed. Hyperspectral images of several rapeseed varieties in range 400-1000 nm were acquired, and then the principal component analysis (PCA) was performed to select three optimal band images. The texture parameters were extracted from the optimal band images based on gray level histogram and gray level co occurrence matrix (GLCM) statistical methods. The ANN model was used for the identification of rapeseed varieties. Detection results of ANN model showed that the discriminating rates of rapeseed varieties in the training and prediction sets were 93.75% and 91.67%, respectively. It is indicated that the hyperspectral imaging technology has a good classification and identification effects on rapeseed varieties.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2011年第2期175-180,共6页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 国家自然科学基金资助项目(60802038) 国家高技术研究发展计划863"资助项目(2006AA10Z234) 浙江省重大科技专项重点农业资助项目(2009C12002)
关键词 图像处理 高光谱图像 品种鉴别 主成分分析 油菜籽 image processing hyperspectral imagery variety identification principal component rapeseed
  • 相关文献

参考文献15

  • 1胡培新,卢绮闽,舒嵘,王建宇.An airborne pushbroom hyperspectral imager with wide field of view[J].Chinese Optics Letters,2005,3(12):689-691. 被引量:2
  • 2Schweizer M, Segall K, Medina S, et al. Rapeseed/ canola protein isolates for use in the food industry [A]//Fu T D, Guan C Y. Proceedings of the 12th International Rapeseed Congress [C]. Science Press USA Inc:2007. 被引量:1
  • 3WU Jian-guo, SHI Chun-hai, ZHANG Hai-zhen, et al. (吴建国,石春梅,张海珍,等). Study on developing calibration models of fat acid composition in intact rapeseed by near infrared reflectance spectroscopy [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2006, 26(2): 259-262. (in Chinese). 被引量:1
  • 4Horn N H, Becker H C, M611ers C. Non-destructive analysis of rapeseed quality by NIRS of small seed samples and single seeds[J]. Euphytiea, 2007, 153: 27-34. 被引量:1
  • 5GAO Jian-qin, ZHANG Jie-fu, PU Hui-ming, et al. (高建芹,张洁夫,浦惠明,等). Analysis of oil, oleic acid and erucic acid contents in rapeseed by near infrared reflectance spectroscopy (N1RS)[J]. Jiangsu Journal of Agricultural Science(满苏农业学报), 2007, 23(3) :189-195. (in Chinese). 被引量:1
  • 6HONG Tian-sheng, LI Zhen, WU Chun-yin, et al. (洪添胜,李震,吴春胤,等). Review of hyperspectral image technology for non-destructive inspection of fruit quality [J]. Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2007,23(3) : 280-285. (in Chinese). 被引量:1
  • 7CAI Jian-rong, WANG Jian-hei, HUANG Xing-yi, et al . (蔡健荣,王建黑,黄星奕,等) . Detection of rust in citrus with hyperspectral imaging technology [J]. Opto- Electronic Engineering(光电工程), 2009,36(6) :26-30. (in Chinese). 被引量:1
  • 8CHEN Quan-sheng, ZHAO Jie-wen, CAI Jian-rong, et al. (陈全胜,赵杰文,蔡健荣,等). Estimation of tea quality level using hyperspectral imaging technology [J]. Acta Optical Sinica(光学学报), 2008,28(4 ) : 669- 674. (in Chinese). 被引量:1
  • 9HONG Tian-sheng, QIAO Jun, NING Wang, et al. (洪添胜,乔军,宁望,等). Non-destructive inspection of Chinese pear quality based on hyperspectral imaging technique [J]. Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2007, 23 (2) : 151-155. (in Chinese). 被引量:1
  • 10ZHAO Jie-wen, LIU Jian-hua, CHEN Quan-sheng, et al.(赵杰文,刘剑华,陈全胜,等). Detecting subtle bruises on fruits with hyperspeetral imaging [J]. Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2008,39 (l) : 106-109. (inChinese). 被引量:1

共引文献1

同被引文献376

引证文献23

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部