期刊文献+

基于小波和生物视觉机制的感兴趣区域提取方法 被引量:2

Extracting Regions of Interest Based on Wavelet and Biological Vision Mechanism
下载PDF
导出
摘要 提出一种基于小波并结合生物视觉机制的感兴趣区域提取算法,首先使用小波构建亮度、颜色和方向等3个特征的小波金字塔,然后使用中央—周边算法得到每个特征的关注图,对关注图进行迭代运算以进一步抑制不显著区域。对迭代处理后的显著图进行线性组合得到最终的显著图;使用WTA网络和返回抑制机制提取显著点,以显著点为中心进行区域生长得到最终的显著区域。实验证明,本方法在提取效果上较原方法提高了4.2%和效率上较原方法提高了28.75%,总体上较原方法有了明显改善。 An extraction algorithm was presented based on wavelet and biological vision mechanism.First,we used wavelet to construct a wavelet pyramid with characteristics of brightness,colour and direction,then employed centeral-circumjacent algorithm to obtain attention map of each characteristic,and carried out iterative algorithm to restrain non-salient regions.Finally,we linearly combined the attention maps to get final attention map and used WTA network and inhibitory mechanism of return to extract salient point,using which as the center to get ultimate saliency region.The test shows that this approach is improved on extraction result and efficiency by 4.2%,and 28.75% respectively,compared with the previous method generally.
出处 《杨凌职业技术学院学报》 2011年第1期13-15,共3页 Journal of Yangling Vocational & Technical College
关键词 图像检索 小波 感兴趣区域 显著图 image retrieval wavelet region of interest saliency map
  • 相关文献

参考文献1

二级参考文献7

  • 1Kuroda Kazuhiro,Masafumi Hagiwara.An image retrieval system by impression words and specific object names-IRIS[J].Neurocomputing,2002,43 (1):259 ~ 276. 被引量:1
  • 2Shoji Tanaka,Masayuki Inoue,Michitoshi Ishiwaka,et al.A method for extracting and analyzing "Kansei" factors from pictures[A].In:IEEE First Workshop on Multimedia Signal Processing[C],Princeton,New Jersey,USA,1997:251 ~ 256. 被引量:1
  • 3The Color Science Association of Japan.Color Science Handbook[M].Tokyo,Japan:Tokyo University Press,1991. 被引量:1
  • 4Se Yoon Jeong,Kyuheon Kim,Byung Tae Chun,et al.Entropy and color correlation features for image indexing[A].In:IEEE SMC ' 99 Conference Proceedings[C],Tokyo,Japan,1999,2:895 ~899. 被引量:1
  • 5Toshiyuki Iwaoka,Hideyuki Kobayahsi,shunji Ota.Digital safari guidebook with image retrieval[A].In:Proceedings of IEEE International Conference on Multimedia Computing and Systems[C],Centro Affari,Firenze,Italy,1999,2:1011 ~1012. 被引量:1
  • 6Takashi Hayashi,Masafumi Hagiwara.An image retrieval system to estimate impression words from images using a neural network[A].In:Proceedings of IEEE International Conference on Systems,Man,and Cybernetics,Computational Cybernetics and Simulation[C],Orlando,Florida,USA,1997,1:150 ~ 155. 被引量:1
  • 7Nadia bianchi,Luc Berthouze,Toshikazu Kato.Supervised self-organization of user's kansei model for image retrieving[A].In:Second International Conference on Cognitive Technology.Humanizing the Information Age Proceedings[C],Aizu-Wakamatsu City,Japan,1997:185 ~ 189. 被引量:1

共引文献17

同被引文献19

  • 1王艳娟,陈晓红,黄晓欣.图像感兴趣区域检测技术[J].计算机与数字工程,2007,35(5):138-139. 被引量:10
  • 2刘松涛.面向目标识别的图像融合技术研究[D].烟台:海军航空工程学院,2006. 被引量:3
  • 3Schall 3 D, Hanes D P, Taylor T L. Neural Control INFI',AttED (MONTHLY)/VoL.34, No.10, OC, T 2013 of Behavior: Countermanding Eye Movements [J]. Psychological Research, 2000, 63(3-4): 299-307. 被引量:1
  • 4Itti L, Koch C, Niebur E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1998, 20(11): 1254-1259. 被引量:1
  • 5Itti L, Koch C. Feature Combination Strategies for Saliency-based Visual Attention Systems [J]. Journal of Electronic Imaging, 2001, 10(1): 161-169. 被引量:1
  • 6Otsu N. A Threshold Selection Method from Gray- level Histogram [J]. IEEE Transactions on System Man Cybernetics, 1979, 9(1): 62-66. 被引量:1
  • 7Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ): 1254-1259. 被引量:1
  • 8Walther D, Koch C. Modeling attention to salient proto-objects[J]. Neural Networks, 2006, 19(9): 1395-1407. 被引量:1
  • 9Leventhal A G. The neural basis of visual function[M]. CRC Press I Llc, 1991. 被引量:1
  • 10Ferrari V, Fevrier L, Jurie F, et al. Groups of adjacent contour segments for object detection[J]. IEEE-TPAM1, 2008, 30(1 ): 36-51. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部