期刊文献+

几种非线性滤波算法的比较研究 被引量:2

Comparative Study on Some Nonlinear Filtering Algorithms
下载PDF
导出
摘要 针对组合导航等非线性系统,扩展卡尔曼滤波算法(EKF)在初值不准确时存在滤波发散的现象,故提出U-卡尔曼滤波(UKF);粒子滤波算法(PF)适合于强非线性、非高斯噪声系统,但同时存在退化现象,故提出2种改进算法。前人的工作多集中在单一算法的研究,而在此是将上述各种算法应用到同一典型非线性系统,通过应用Matlab进行仿真实验得出具体滤波效果数据,综合对比分析了各算法的优缺点,得出一些有用的结论,为组合导航系统中非线性滤波算法的选择提供了参考。 For the nonlinear systems such as integrated navigation systems, since the extended Kalman filtering (EKF) has a dispersing phenomenon when the initial state value is inaccurate, the unscented Kalman filtering (UKF) is proposed, and although particle filtering (PF) is suitable for any nonlinear non Gaussian systems, it has a degeneracy phenomenon, then two kinds of improved filtering algorithms are put forward. Scientific researchers focused on single filtering before. The filte ring algorithms mentioned above are adopted in a same typical model of nonlinear system in this paper. The detailed data of the filtering algorithms were obtained by emulational experiments with Matlab. Some useful conclusios were acquired after the contrast and analysis of their advantages and disadvantages. A reference is offered in choosinga suitable nonlincarfiltering algorithm for integrated navigation systems.
出处 《现代电子技术》 2011年第6期83-85,93,共4页 Modern Electronics Technique
关键词 卡尔曼滤波 粒子滤波 非线性滤波算法 导航系统 Kalman filtering particle filtering nonlinear filtering algorithm navigation system
  • 相关文献

参考文献11

二级参考文献26

  • 1杨建全,梁华,王成友.视频监控技术的发展与现状[J].现代电子技术,2006,29(21):84-88. 被引量:62
  • 2K Xiong, H Y Zhang, C W Chan. Performance evaluation of UKF based nonlinear filtering [ R ]. Automatica, February, 2006, 42 (2) :261 -270. 被引量:1
  • 3E Wan, R van der Merwe. The unscented Kalman filter for nonlinear estimation [ C ]. Adaptive Systems for Signal Proce - ssing, Communications and Control Symposium, Lake Louise, Alta, USA, 2000. 被引量:1
  • 4A Doucet, S J Godsill, C Andrieu. On sequential Monte car - lo sampling methods for Bayesian filtering[ J]. Statistics and Computing, 2000,10(3) :197 -208. 被引量:1
  • 5M Sanjeev Arulampalam, B Risfic, N Gordon. Bearings only tracking of manoeuvring targets using particle filters [ C ]. EURASIP Journal on Applied Signal Processing, 2004, 15:2351 - 2365. 被引量:1
  • 6Doucet. Rao - Black wellised particle filtering for dynamic Bayesian networks [ C ]. Proc UAI2000, Cambridge U K, Calnbridge Univ Press. 2000. 253 - 259. 被引量:1
  • 7R Chen. Mixture Kalman filters [ J ]. J Roy Statist Soc (B), 2000,62:493 - 508. 被引量:1
  • 8A Doucet. On sequential Monte Carlo sampling methods for Bayesian filtering[ J]. Statist Comput, 2000,10 : 197 - 208. 被引量:1
  • 9R Van Der Merwe. The Unscented Particle Filter. Adv Neural Inform Process Syst[ M]. Massachusetts: MIT Pres - s, 2000. 353 - 359. 被引量:1
  • 10E Wan. The unscented Kalman filter[ M]. Haykin S. Kalman Filtering and Neural Networks [ C ]. New York: Wiley, 2001. 146 -153. 被引量:1

共引文献73

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部