期刊文献+

基于K均值聚类的图割医学图像分割算法 被引量:16

Graph Cuts Medical Image Segmentation Algorithm Based on K-means Clustering
下载PDF
导出
摘要 图割是一种同时基于区域和边界的交互式图像分割算法。传统的基于高斯混合模型的图割具有时间慢和描述组织中灰度分布不准确的缺点。为此,提出一种基于K均值聚类的图割算法。通过用改进的图割来分割仿体的和真实的脑部核磁共振图像,显示出该方法的有效性。该方法不但能提高图割在分割时的速度,在有噪音和灰度不均匀的图像上也能在较短的时间内得到更准确且鲁棒的结果。 Graph cuts is an interactive segmentation algorithm based on boundary and region properties of objects in images.The region term in conventional graph cuts is based on Gaussian Mixture Model(GMM).However,it is not only a slow process,but sometimes it can't describe the distribution of pixels in objects precisely.This paper proposes an improved algorithm based on K-means clustering graph cuts.Its evaluation is performed using both phantoms and real Magnetic Resonance Imaging(MRI) of brain,the effectiveness and efficiency of the proposed algorithm are showed.And in particular,an accurate and robust results in segmenting images with noise and intensity non-uniformity with a low computational cost can be achieved.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期232-234,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60621001) 中国科学院知识创新工程重要方向基金资助项目"计算机辅助肝脏手术前风险定量分析预测及术后功能评估系统"(KSCX2-YW-R-262)
关键词 图像分割 图割 K均值聚类 脑部核磁共振图像 image segmentation graph cuts K-means clustering Magnetic Resonance Imaging(MRI) of brain
  • 相关文献

参考文献8

  • 1Scherrer B, Forbes F, Garbay C, et al. Distributed Local MRF Models for Tissue and Structure Brain Segmentation[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1278-1295. 被引量:1
  • 2蒋世忠,易法令,汤浪平,涂泳秋.基于图割的MRI脑部图像肿瘤提取方法[J].计算机工程,2010,36(7):217-219. 被引量:11
  • 3Kolmogorov V, Zabih R. What Energy Functions Can be Minimized Via Graph Cuts?[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159. 被引量:1
  • 4Peng B, Vcksler O. Parameter Selection for Graph Cut Based on Image Segmentation[C]//Proc. of British Machine Vision Conference. Leeds, UK: [s. n.], 2008. 被引量:1
  • 5Rother C, Blake A, Kolmogorov V. Grabcut-lnteractive Foreground Extraction Using Iterated Graph Cuts[J]. Transactions on Graphics, 2004, 23(3): 309-314. 被引量:1
  • 6Boykov Y, Jolly M. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images[C]//Proc. of International Conference on Computer Vision. Vancouver, Canada: [s. n.], 2001. 被引量:1
  • 7MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]//Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California Press, 1967. 被引量:1
  • 8Greenspan H, Ruf A, Goldberger J. Constrained Gausslan Mixture Model Framework for Automatic Segmentation of MR Brain Images[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1233-1245. 被引量:1

二级参考文献8

  • 1Muller H, Michous N, Bandon D, et al. A Review of Content-based Image Retrieval Systems in Medical Applications-Clinical Benefits and Future Directions[J]. International Journal of Medical Informatics, 2004, 73( 1 ): 1-23. 被引量:1
  • 2Wu Zhenyu, Leahy R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1101-1113. 被引量:1
  • 3Shi Jianbo, Malik J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 被引量:1
  • 4Ding C H Q, He Xiaofeng, Zha Hongyuan, etal. A Min-Max Cut Algorithm for Graph Partitioning and Data Clustering[C]//Proc. of IEEE International Conference on Dala Mining. [S. l.]: IEEE Press, 2001 : 107-114. 被引量:1
  • 5Li Xiaobin, Tian Zheng. Optimum Cut-based Clustering[J]. Signal Processing, 2007, 87( 11 ): 2491-2502. 被引量:1
  • 6Gomory R, Hu T C. Multitcrminal Network Flows[J]. Society for Industrial and Applied Mathematics Journals, 1961, 9(4): 551-570. 被引量:1
  • 7Veksler O, Image Segmentation by Nested Cuts[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. I.]: IEEE Press, 2000: 339-344. 被引量:1
  • 8詹天明,张建伟,陈允杰,王宇,吴玲玲.快速CV双水平集算法的人脑MR图像分割[J].计算机工程,2009,35(14):181-183. 被引量:6

共引文献10

同被引文献149

引证文献16

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部