期刊文献+

一种基于DTSVM的遥感图像分割方法 被引量:2

A segmentation method of remote sensing image based on DTSVM
下载PDF
导出
摘要 文章针对城市遥感图像的目标分布特点,提出一种基于改进DTSVM的遥感图像分割方法。实验引入样本的聚类特性改善DTSVM模型分类精度,对城市遥感图像中的区域进行语义标注并提取特征,通过训练改进分类模型得到分割结果。实验结果表明,该方法能比较准确地分割出关注语义的目标区域,并有效避免了遥感图像的过分割问题。 In view of the object distribution characteristics of urban remote sensing images, this paper proposes a remote sensing image segmentation method based on improved decision tree support vector machine(DTSVM). The clustering characteristics of testing samples is used to improve the classification accuracy of DTSVM model, and features are extracted from the semantieally-annotated regions on urban remote sensing images. Then by training the improved DTSVM model with these features, the segmentation results of testing images are obtained. The experimental results demonstrate that the proposed method provides a satisfactory segmentation of concerned semantic objects and the over-segmentation of remote sensing images is effectively avoided.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期383-386,共4页 Journal of Hefei University of Technology:Natural Science
关键词 遥感图像分割 语义 支持向量机 remote sensing image segmentation semantics support vector machine(SVM)
  • 相关文献

参考文献15

二级参考文献72

共引文献93

同被引文献14

  • 1杨国鹏,余旭初,陈伟,刘伟.基于核Fisher判别分析的高光谱遥感影像分类[J].遥感学报,2008,12(4):579-585. 被引量:24
  • 2SONKAM HLAVACV BOYLER 艾海舟 武勃 译.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003.. 被引量:23
  • 3高文,陈熙霖.计算机视觉:算法与系统原理[M].北京:科学出版社,1998:226. 被引量:1
  • 4Marrn视觉计算理论[M].姚正国,谢磊,汪云儿,等,译.北京:科学出版社,1988:155-157. 被引量:1
  • 5Forsyth D A,Ponce J. Computer vision: a modern approach[M] New Jersey: Pearson Education, 2002 = 345- 350. 被引量:1
  • 6Olshausen B A, Field D J. Emergence of simple-cell recep- tive field properties by learning a sparse code for natural images[J]. Nature, 1996,381 ~ 607- 609. 被引量:1
  • 7Zhu S C,Wu Y N,Mumford D. Minimax entropy principle and its applications in texture modeling[J]. Neural Com- putation, 1997,9(8) : 1627- 1660. 被引量:1
  • 8Guo C E, Zhu S C,Wu Y N. Primal sketch:integrating tex- ture and structure[J]. Computer Vision and Image Under- standing, 2007,106(1) : 5 19. 被引量:1
  • 9Mallat S, Zhang Z. Matching pursuit with a time-frequency dictionary[J]. IEEE Transactions on Signal Processing, 199.3.41(12),3397 3415. 被引量:1
  • 10孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1070

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部