期刊文献+

基于改进子空间追踪算法的稀疏信道估计 被引量:5

Sparse channel estimation based on modified subspace pursuit algorithm
下载PDF
导出
摘要 由于许多通信系统的信道具有稀疏多径的特性,因此可以将信道估计问题归结为稀疏信号的恢复问题,继而应用压缩感知理论(CS)的算法求解。针对CS中现存的信号重构方法——子空间追踪法(SP)需要对稀疏度有先验知识的缺点,提出一种改进的子空间追踪法(MSP)。该方法的反馈和精选过程与SP算法一致,不同之处是MSP算法每次迭代时向备选组合中反馈添加的向量个数是随着迭代次数而逐一增加的,而SP算法中备选组合被添加的向量个数与稀疏度相同。仿真结果表明,基于MSP方法所得到的稀疏多径信道估计结果优于基于传统SP的方法,且无需已知信道的多径个数。 Due to the sparse structure of channels in a number of communication systems,the sparse channel estimation problem can be formulated as the reconstruction problem of sparse signals,and then being solved by certain algorithm in Compressive Sensing(CS) theory.To avoid needing prior knowledge for sparseness,a Modified Subspace Pursuit(MSP) was proposed.The feedback and refining processes of MSP are the same as those of the existing Subspace Pursuit(SP),the difference between them is that,in MSP,the number of vectors added to the candidate set is increased one by one,not equal to the number of sparseness in SP in every iteration.The simulation results show that,compared with the existing subspace pursuit method,the main innovative feature of the proposed algorithm is that it does not need to assume the sparseness of channel but offers superior estimation resolution.
作者 郭莹 邱天爽
出处 《计算机应用》 CSCD 北大核心 2011年第4期907-909,995,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60911140288)
关键词 稀疏信道 压缩感知 子空间追踪 信道估计 sparse channel Compressive Sensing(CS) subspace pursuit channel estimation
  • 相关文献

参考文献10

  • 1COTTER S F, RAO B D. The adaptive matching pursuit algorithm for estimation and equalization of sparse time-varying channels[ C ]// Thirty-Fourth Asilomar Conference oil Signals, Systems and Comput- ers. Washington, DC: IEEE, 2000: 1772-1776. 被引量:1
  • 2KARABULUT G Z, YONGACOGLU A. E~timation of time-vaiTing channels with orthogonal matching pursuit algorithm [ C ]//2005 IEEE Symposium on Advances in Wired and Wireless Comnmnication. Washington, DC: IEEE, 2005: 141-144,. 被引量:1
  • 3DONOHO D. Compressed sensing [ J ]. IEEE Transactions on Intor- mation Theory, 2006, 4(52) : 1289 - 1306. 被引量:1
  • 4BARANIUK R. A lecture on compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24 (4) : 118 -121. 被引量:1
  • 5MALLAT S, ZHANG Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993, 12(41):3397-3415. 被引量:1
  • 6TROPP J A , GILBERT A C. Signal recovery from partial informa- tion by orthogonal matching pursuit [ EB/OL]. [ 2010 - 09 - 16], http://www, personal, umich, edu/-jtropp/papers/ TGO52SignalRecovery. Pdf. 被引量:1
  • 7DAI W, MILENKOVIC O. Subspaee pursuit for compressive sensing signal reconstruction [ J ]. IEEE T~ransactions on Information Theory, 2009, 55(5) : 2230-2249. 被引量:1
  • 8GHOSH M. Blind decision feedback equalization for terrestrial television receivers [ J ]. IEEE Signal Proceeding, 1998, 86(10): 2070 - 2081. 被引量:1
  • 9朱行涛,刘郁林,赵翔,徐舜.MIMO-OFDM系统中稀疏信道估计算法研究[J].云南大学学报(自然科学版),2007,29(6):574-578. 被引量:2
  • 10胡健,张延华,周作成.一种改进的稀疏信道估计算法[J].通信技术,2009,42(7):31-33. 被引量:4

二级参考文献17

  • 1李军,章新华,韩东.基于AR模型的水声信道盲估计算法[J].通信技术,2007,40(6):9-10. 被引量:5
  • 2Carbonelli C, VedantamS, Mitra U. Sparse channel estimation with zero tap detection[J]. IEEE Transactions on Wireless Communications, 2007, 6 (05):1743-1753. 被引量:1
  • 3Li Weichang, James C Preisig. Estimation of Rapidly Time-Varying Sparse Channels[J]. Oceanic Engineering of IEEE, 2007, 32(04):927-939. 被引量:1
  • 4Cotter S, Rao B. Sparse channel estimation via matching pursuit with application to equalization[J]. IEEE Trans Commun, 2002, 50(03):374-377. 被引量:1
  • 5Raghavendra M R, Giridhar K. Improving Channel Estimation in OFDM Systems for Sparse Multipath Channels[J]. IEEE Signal Processing, 2005, 12(01):52-55. 被引量:1
  • 6Feuer A, Nemirovsky A. On sparse representation in pairs of bases[J]. IEEE Trans. on Information Theory, 2007, 49(06): 1579-1581. 被引量:1
  • 7Karabulut G Z, Yongagoglu A. Estimation of Time-Varying Channels with Orthogonal Matching Pursuit Algorithm[J]. Advances in Wired and Wireless Communication of IEEE, 2005, 3 (01) : 141-144. 被引量:1
  • 8MINN H,BHARGAVA V K. An investigation into time-domain approach for OFDM channel estimation[J]. IEEE Trans Broadcastin g, 2000,46 (4) :240-248. 被引量:1
  • 9RAGHAVENDRA M R, GIRIDHAR K. Improving channel estimation in OFDM systems for sparse multipath channels[J]. IEEE Signal Processing Letters, 2005,12( 1 ) :52-55. 被引量:1
  • 10FOSCHINI G J, GANS M J. On limits of wireless communications in a fading environment when using multiple antennas [ J ]. Wireless Personal Communications, 1998,6 : 311-335. 被引量:1

共引文献4

同被引文献45

  • 1童常根,刘敬彪,刘纯虎.水声信道多径传播的仿真[J].杭州电子科技大学学报(自然科学版),2007,27(3):13-16. 被引量:2
  • 2陈韶华,相敬林,石杰.稀疏多径信道的T/2间隔CFE均衡器研究[J].电子与信息学报,2006,28(6):1082-1085. 被引量:4
  • 3Donoho D.Compressed sensing [J]. IEEE Transactions on In- formation Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 4Donoho D,Tsaig Y. Extensions of compressed sensing[J]. Sig- nal Processing. 2006, 86 (3):533-548. 被引量:1
  • 5Candes E. Compressive sampling[C]. Proceedings of the In- ternational Congress of Mathematicians. Madrid, Spain, 2006, 3:1433 - 1452. 被引量:1
  • 6Candes E, Romberg J, Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans, on Information Theory, 2006, 52 (2):489-509. 被引量:1
  • 7Candes E. The restricted isometry property and its implica- tions for compressed sensing[J], Academie des sciences, 2006, 346(1 ):59B-592. 被引量:1
  • 8R Baraniuk. Compressive sensing[J]. IEEE Signal Proeessing Magazine .2007.24(4): 118-IZ. 被引量:1
  • 9M Aharon,M Elad,A M Bruekstein. The K-SVD: An algorithm for designing of overeomPletes dictionaries for sparse representations[J]. IEEE Transactions on Image Proeessing, 200654(1 1):431 1-4322. 被引量:1
  • 10IDONOHO D.TSAIG Y Extensions of compressed sensing,2006(03). 被引量:1

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部