期刊文献+

基于支持向量经验模态分解的故障率时间序列预测 被引量:8

Failure Rate Time Series Prediction Based on Support Vector Empirical Mode Decomposition
原文传递
导出
摘要 针对故障率时间序列的非线性与非平稳特性,提出一种基于支持向量经验模态分解(SVEMD)的预测方法。首先,将故障率时间序列分解为多个固有模态函数(IMF)与一个余量(RF),利用最小二乘支持向量机(LSSVM)预测时间序列两端的局部极值点,以抑制传统经验模态分解(EMD)的边缘效应;同时以LSSVM回归方式形成包络线,以取代传统EMD中的三次样条插值;然后,建立各IMF与RF的预测模型;最终,将各IMF与RF的预测结果相加以获得故障率时间序列的预测结果。仿真结果表明,该方法的预测精度较传统基于EMD的预测方法与单一预测方法有显著提高,可实现对故障率的准确预测。 A prediction method based on support vector empirical mode decomposition(SVEMD) is proposed to deal with the non-linearity and non-stationarity of failure rate data.First,the failure rate data is decomposed into a series of intrinsic mode functions(IMFs) and a residual function(RF) by using empirical mode decomposition(EMD),and then a least squares support vector machine(LSSVM) is used to predict the local extremal points of the failure rate data and solve the end effect problem of the EMD.The upper and lower envelopes are constructed by using LSSVM regression instead of spline interpolation in EMD.Machine-learning-based prediction models are trained to predict the IMFs and RF.Finally,the prediction results of the failure rate data are obtained by integrating the prediction results of the IMFs and RF.Experiments on a plane failure rate prediction indicate that the proposed SVEMD-based prediction method can predict failure rate data accurately and has better performance in prediction accuracy than the traditional EMD-based prediction methods.
作者 张弦 王宏力
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第3期480-487,共8页 Acta Aeronautica et Astronautica Sinica
关键词 经验模态分解 最小二乘支持向量机 时间序列预测 时间序列分析 故障率预测 empirical mode decomposition least squares support vector machine time series prediction time series analysis failure rate prediction
  • 相关文献

参考文献15

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:284
  • 2李瑞莹,康锐.基于神经网络的故障率预测方法[J].航空学报,2008,29(2):357-363. 被引量:55
  • 3Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non linear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London: Series A, 1998, 454(1971): 903-995. 被引量:1
  • 4Yang Z J, Yang L H, Qing C M. An oblique-extrema based approach for empirical mode decomposition[J]. Dig ital Signal Processing, 2010, 20(3): 699-714. 被引量:1
  • 5Xu Z G, Huang B X, Zhang F. Improvement of empirical mode decomposition under low sampling rate[J]. Signal Processing, 2009, 89(11):2296-2303. 被引量:1
  • 6Gao Q, Duan C, Fan H, et al. Rotating machine fault di agnosis using empirical mode decomposition[J]. Mechani cal Systems and Signal Processing, 2008, 22 (5): 1072-1081. 被引量:1
  • 7王军栋,齐维贵.基于EMD-SVM的江水浊度预测方法研究[J].电子学报,2009,37(10):2130-2133. 被引量:15
  • 8Wu F J, Qu L S. An improved method for restraining the end effect in empirical mode decomposition and its applica tions to the fault diagnosis of large rotating machinery[J]. Journal of Sound and Vibration, 2008, 314(3/4/5) : 586- 602. 被引量:1
  • 9Qi K Y, He Z J, Zi Y Y. Cosine window-based boundary processing method for EMD and its application in rubing fault diagnosis[J]. Mechanical Systems and Signal Pro cessing, 2007, 21(5): 1197-1211. 被引量:1
  • 10Suykens J A K, Vandewalle J. Least squares support vec tor machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300. 被引量:1

二级参考文献77

共引文献376

同被引文献115

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部