期刊文献+

Lamb波在复合材料板中传播的谱有限元模拟 被引量:3

Modeling of Lamb Wave Propagations in Composite Plates by Spectral Element Method
下载PDF
导出
摘要 众所周知Lamb波在复合材料中的传播呈各向异性的特点,经典有限元法模拟这类问题效率不高,所以,本文采用谱有限元法进行研究。先建立了一种新的谱有限板单元,该单元以Gauss-Lobatto-Legendre点作为节点,使质量矩阵是对角矩阵;另外,该单元采用了扩展的位移场,能够较好地模拟板结构的三维特性。然后,对复合材料板结构中Lamb波在对称模式与反对称模式下的传播速度进行了求解,将计算结果与Mindlin板谱单元的结果以及三维弹性理论的结果进行了比较,并讨论了Lamb波在反对称层合板中的传播特点。最后,模拟了Lamb波在含和不含损伤复合材料层合板中的传播,数值结果表明所建立的谱有限板单元可以较好地模拟出Lamb波在复合材料板结构中的传播特性。 It is well known that the propagation of Lamb waves in composite materials exhibits anisotropic characteristics,and that the conventional finite element method is inefficient for modeling such problems.Therefore,the spectral finite element method was used in the present investigations.A new spectral plate element was established.The Gauss-Lobatto-Legendre points were taken as the nodes,thus the mass matrix was in diagonal form.The extended form of the displacement fields was employed,thus the two dimensional element can be used to model three dimensional behavior of plate structures.The velocity of symmetric and anti-symmetric modes of Lamb wave propagating in composite plates was then computed.The results were compared to the data obtained by spectral finite element method based on Mindlin's theory and analytical solutions of three dimensional elasticity.In addition,the characteristics of Lamb wave propagating in anti-symmetric laminated plates were discussed.Finally,Lamb wave propagating in composite laminated plates with and without damage was simulated.Numerical results indicate that the proposed spectral element can be modeled the characteristics of Lamb wave propagating in laminated composite plates.
出处 《力学季刊》 CSCD 北大核心 2011年第1期10-18,共9页 Chinese Quarterly of Mechanics
基金 国家自然科学基金重点项目(50830201)
关键词 谱有限元法 LAMB波 复合材料 波速 spectral finite element Lamb waves composite materials wave speed
  • 相关文献

参考文献13

  • 1Guo N, Cawley P. The interaction of Lamb waves with delaminations in composite laminates[J]. Journal of Acoustical Society of America, 1993,94(4) : 2240 - 2246. 被引量:1
  • 2Brebbia C A,Tells J C F, Wrobel L C. Boundary Elements Techniques[M]. Berlin: Springer, 1984. 被引量:1
  • 3Cho Y, Rose J L. A boundary element solution for a mode conversion study on the edge reflection of Lamb waves [J]. Journal of Acous- tical Society of America,1996,99(4) :2097 2109. 被引量:1
  • 4Delsanto P P, Mignogna R B. A spring model for the simulation of the ultrasonic pulses through imperfect contact interfaces[J]. Journa of Acoustical Society of America, 1998,104:1 - 8. 被引量:1
  • 5Delsanto P P, Whitecomb T, Chaskelis H H, Mignogna R B. Connection machine simulation of ultrasonic wave propagation in materials. I: the one- dimensional case[J]. Wave Motion,1992,16:65 - 80. 被引量:1
  • 6Wang X, Xu C, Xu S. The discrete singular convolution for analyses of elastic wave propagations in one - dimensional structures [J]. Applied Mathematical Modelling,2010,34 :3493 3508. 被引量:1
  • 7Kudela P, Krawczuk M, Ostachowicz W. Wave propagation modeling in 1D structures using spectral finite elements[J]. Journal of Sound and Vibration,2007,300 : 88 - 100. 被引量:1
  • 8Zak A, Krawczuk M, 0stachowicz W. Propagation of in - plane waves in an isotropic panel with a crack [J]. Finite Elements in Analysis and Design,2006,42, 929 941. 被引量:1
  • 9Peng H K, Meng G, Li F C. Modeling of wave propagation in plate structures using three dimensional spectral element method for damage detection [J]. Journal of Sound and Vibration,2009,320:942 - 954. 被引量:1
  • 10Kudela P, Zak A, Krawczuk M, Ostachowicz W. Modelling of wave propagation in composite plates using the time domain spectral ele- ment method [J]. Journal of Sound and Vibration,2007,302:728 - 745. 被引量:1

同被引文献37

  • 1沈中华,许伯强,倪晓武,陆建.单层和双层材料中的脉冲激光超声数值模拟[J].中国激光,2004,31(10):1275-1280. 被引量:25
  • 2Xu B, Feng J, Xu C et al. Laser-generated thermoelas- tic acoustic sources and Lamb waves in anisotropic plates. Appl. Phys. A-Mater., 2008: 91(1): 173-179. 被引量:1
  • 3Brischetto S, Carrera E. Coupled thermo-mechanical anal- ysis of one-layered and multilayered plates. Compos. Stvuct., 2010: 92(8): 1793-1812. 被引量:1
  • 4Thomson W T. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys., 1950: 21(2): 89- 93. 被引量:1
  • 5Knopoff L. A matrix method for elastic wave problems. B. Seismol. Soc. Am., 1964: 54(1): 431-438. 被引量:1
  • 6Dunkin J W. Computation of modal solutions in layerec elastic media at high frequencies. B. Seismol. Soc. Am. 1965: 55(2): 335-358. 被引量:1
  • 7Lowe M J S. Matrix techniques for modeling ultrasonic waves in multilayered media. Ultrasonics, 1995: 42(4): 525-542. 被引量:1
  • 8Aalami B. Waves in prismatic guides of arbitrary cross sec- tion. J. Appl. Mech., 1973: 40:1067-1072. 被引量:1
  • 9Lagasse P. Higher-order finite element analysis of topo- graphic guides supporting elastic surface waves, J. Acoust. Soc. Am., 1973: 53:1116-1122. 被引量:1
  • 10Hayashi T, Song W J, Rose J L. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics, 2003: 41(3): 175-183. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部