期刊文献+

基于结构风险上界的SVM参数选择

SVM Parameter Selection Based on the Bound of Structure Risk
原文传递
导出
摘要 提出了基于结构风险上界的SVM参数选择方法。首先,从理论上分析了SVM结构风险上界的计算方法,给出了结构风险上界的算法步骤;其次,以结构风险上界作为SVM泛化性评价准则对5个UCI公开数据库和经过实测建立的两个特征库(包括二类和多类数据)进行了参数选择仿真实验,并与5-折交叉验证的实验结果进行了比较,结果表明,基于结构风险上界的SVM参数选择方法有效、省时。 Support Vector Machine(SVM) is an intelligent technology for classification problems.Because of its flexibility,computational efficiency and capacity to handle high dimensional data,SVM has become a popular research issue in recent years.Selection of optimal parameters is important for an SVM.The traditional methods,such as the k-fold cross validation,can select optimal parameters,but would take too much time.In this paper,a method of SVM parameter selection based on the bound of structure risk is proposed.First,the bound of the structure risk is theoretically analyzed.Then,the simulated experiments with several datasets are designed.Comparisons are made between the proposed method and the method based on the 5-folds cross validation.The results show that the proposed method is effective and takes less time,and it would be very suitable for target recognition problems.
出处 《科技导报》 CAS CSCD 北大核心 2011年第8期72-74,共3页 Science & Technology Review
基金 "十一五"装备预研项目(2009YY02)
关键词 支持向量机 结构风险上界 参数选择 support vector machine bound of structure risk parameter selection
  • 相关文献

参考文献11

  • 1Vapnik V. The nature of statistics learning theory [M]. New York: Springer Verlag, 1995. 被引量:1
  • 2Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification [R/OL]. [2008-06-16]. http://www.csie.ntu.edu.tw/cjlin/ papers/guide/guide.pdf. 被引量:1
  • 3阎辉,张学工,马云潜,李衍达.基于变异函数的径向基核函数参数估计[J].自动化学报,2002,28(3):450-455. 被引量:23
  • 4Ayat N E, Cheriet M, Suen C Y. Automatic model selection for the optimization of SVM kernels[J]. Pattern Recognition, 2005, 38(10): 1733- 1745. 被引量:1
  • 5Huang C L, Wang C J. A GA-based feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2): 231-240. 被引量:1
  • 6Yu Q, Zhang B H, Wang J L. Parameter optimization of e-SVM by genetic algorithm[C]. 5th International Conference on Natural Computation, Tianjin, China, Aug 14-16, 2009. 被引量:1
  • 7Guo X C, Yang J H, Wu C G, et rd. A novel LS-SVM hyper-parameter selection based on particle swarm optimization[J]. Neurocomputing, 2008, 71(16-18): 3211-3215. 被引量:1
  • 8Zhang X Y, Guo Y L. Optimization of SVM parameters based on PSO algorithm [C]. 5th International Conference on Natural Computation, Tianjin, China, Aug 14-16, 2009. 被引量:1
  • 9Mu T T, Nandi A K. Automatic tuning of L2-SVM parameters employing the extended Kahnan filter[J]. Expert Systems, 2009, 26(2): 160-175. 被引量:1
  • 10Vapnik V. Statistical learning theory[M]. New York: J Wiley, 1998. 被引量:1

二级参考文献1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部