期刊文献+

基于M估计的DEM精度评价 被引量:1

DEM Accuracy Assessment Based on M-Estimation
原文传递
导出
摘要 为了克服数字高程模型(DEM)精度估计中传统方法受误差分布非正态性的影响,发展了基于自适应M(AM)估计的DEM精度评价。AM估计以高崩溃污染率的估计值为DEM误差指标初值,以误差残差分布为误差权重选择依据,通过对估值结果多次迭代,最终实现DEM误差估计。以DEM误差均值和标准差为精度指标,数值试验和实例分析表明,传统的非抗差估计法受粗差影响最为严重,使其估计结果远偏离真值;尽管"3σ准则"和传统的抗差估计法能够剔除部分粗差,但一定程度上仍受粗差影响,使结果的精度较低;AM估计受粗差影响最小,对DEM误差指标估计精度最高,可用于误差非正态分布的DEM精度评价。 The report on of DEM accuracy is commonly based on some global statistical measures,such as the mean and standard deviation of DEM errors.Usually,the specification of these accuracy indices is based on the assumption that the error distribution is normal and there is no outlier and systematic error.However,such an assumption is rarely an exact statement owing to the malfunction or improper calibration of instruments,mistaken readings,gross recording and calculation,and improper execution,etc,particularly when a DEM is directly derived from digital photogrammetric systems and active airborne sensors including Light Detection and Ranging(LiDAR) and InSAR.A robust estimator based on the adaptive M-estimation principle(REMP) has been developed for the DEM accuracy assessment.The iteration of REMP starts from estimations with a high breakdown point and selection of the weights of errors with the residual distribution.In terms of DEM mean and standard deviation errors,two examples including a numerical test and a real-world one were employed to comparatively analyze the results of REMP and the classical non-robust and robust estimators.Results indicate that under the non-normal distribution of DEM errors,the classical non-robust estimators are seriously influenced by the non-normality.Some robust estimators,such as 10% trimmed or Winsorized mean,normalized median absolute deviation are not very robust to resist the influence of outliers.REMP that is slightly affected by the non-normal distribution of DEM errors is more accurate than the classical estimators.The robust methodology can adapt to the DEMs,especially the ones derived from remote sensing,such as LiDAR or digital photogrammetry in the non-open terrain.
出处 《科技导报》 CAS CSCD 北大核心 2011年第7期50-54,共5页 Science & Technology Review
基金 国家杰出青年科学基金项目(40825003) "十一五"国家科技支撑计划项目(2006BAC08B) <科技导报>博士生创新研究资助计划项目(kjdb200902-3) 山东省"泰山学者"建设工程专项
关键词 DEM 精度评价 M估计 误差 DEM accuracy assessment M-estimation error
  • 相关文献

参考文献28

  • 1Chow T E, Hodgson M E. Effects of lidar post-spacing and DEM resolution to mean slope estimation [J]. lnterntational Journal of Geographical Information Science, 2009, 23(10): 1277-1295. 被引量:1
  • 2Fisher P F, Tate N J. Causes and consequences of error it, digital elevation models[J]. Progress in Physical Geography, 2006, 30(4): 467-489. 被引量:1
  • 3James T D, Murray T, Barrand N E, et al. Extracting photogrammetric ground control from lidar DEMs for change detection [J]. The Photogrammetric Record, 2006, 21(116): 312-328. 被引量:1
  • 4Queija V, Stoker J, Kosovich J. Recent US geological survey applications of lidar [J]. Photogrammetric Engineering and Remote Sensing, 2005, 71 (1): 5-9. 被引量:1
  • 5Darnell A R, Tate N J, Brunsdon C. Improving user assessment of error implications in digital elevation models [J]. Computers, Environment and Urban Systems, 2008, 32(4): 268-277. 被引量:1
  • 6胡鹏,吴艳兰,胡海.数字高程模型精度评定的基本理论[J].地球信息科学,2003,5(3):64-70. 被引量:54
  • 7Li Z. On the measure of digital terrain model accuracy [J]. The Photogrammetric Record, 1988, 12(72): 873-877. 被引量:1
  • 8Carlisle B H. Modelling the spatial distribution of DEM error [J]. Transactions in GIS, 2005, 9(4): 521-540. 被引量:1
  • 9Aguilar F J, Aguilar M A, Agera F. Accuracy assessment of digital elevation models using a non-parametric approach [J]. International Journal of Geographical Information Science, 2007, 21(6): 667-686. 被引量:1
  • 10Zandbergen P A. Positional accuracy of spatial data: Non-normaldistributions and a critique of the national standard for spatial data accuracy[J]. Transactions in GIS, 2008, 12(1): 103-130. 被引量:1

二级参考文献38

  • 1游松财,孙朝阳.中国区域SRTM90m数字高程数据空值区域的填补方法比较[J].地理科学进展,2005,24(6):88-92. 被引量:39
  • 2武汉大学 山东大学计算数学教研室.计算方法[M].北京:人民教育出版社,1979.. 被引量:20
  • 3..1:5万数字高程模型(DEM)生产技术规定(暂行本)[S].国家测绘局,1998.. 被引量:1
  • 4Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User's Guide[M]. New York: Oxford University Press, 1998. 被引量:1
  • 5Li Zhilin. Effects of Check Points on the Reliability of DTM Accuracy Estimates Obtained from Experimental Tests[J].Photogrammetric Engineering and Remote Sensing, 1991, 57(10): 1 333-1 340. 被引量:1
  • 6Fisher P F, Tate N J. Causes and Consequences of Error in Digital Elevation Models[J].Progress in Physical Geography, 2006, 30(4): 467-489. 被引量:1
  • 7Brown D, Bara T. Recognition and Reduction of Systematic Error in Elevation and Derivative Surfaces from 7.5 Minute DEMs[J]. Photogrammetric Engineering and Remote Sensing, 1994, 60 (2): 195-202. 被引量:1
  • 8Huang Y D. Evaluation of Information Loss in Digital Elevation Models with Digital Photogrammetric Systems[J]. Photogrammetric Record, 2000, 16 (95): 781-791. 被引量:1
  • 9Ziadat F M. Effect of Contour Intervals and Grid Cell Size on the Accuracy of DEMs and Slope Derivatives[J]. Transactions inGIS, 2007, 11(1): 67-81. 被引量:1
  • 10Holmes K W, Chadwick O A, Kyriakidis P C. Error in a USGS 30-meter Digital Elevation Model and Its lmpact on Terrain Modeling[J].Journal of Hydrology, 2000, 233:154 -173. 被引量:1

共引文献318

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部