期刊文献+

基于粗糙集理论的序列离群点检测 被引量:16

Sequence Outlier Detection Based on Rough Set Theory
下载PDF
导出
摘要 作为数据挖掘的一项重要任务,离群点检测已经引起人们的广泛关注.本文基于粗糙集理论来讨论离群点的定义与检测问题,提出了一种新的离群点定义——粗糙序列离群点以及相应的离群点检测算法RSOD.该算法利用粗糙集理论中的知识熵和属性重要性等概念来构建三种类型的序列,并通过分析序列中元素的变化情况来检测离群点.在UCI标准数据集上,将RSOD算法与现有的离群点检测算法进行了比较分析,实验结果表明,我们所提出的离群点检测方法是有效的. As an important task of data mining,outlier detection has attracted much attention.We discuss the issues of outlier definition and detection based on rough set theory.We propose a new definition for outlier-rough sequence outlier,and the corresponding outlier detection algorithm RSOD.The algorithm constructs three kinds of sequences exploiting the notions of knowledge entropy and significance of attribute in rough sets,and detects outliers by analyzing changes of the elements in the sequences.We compare algorithm RSOD with the current outlier detection algorithms on UCI data sets.And experimental results show that our method is effective for outlier detection.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第2期345-350,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60802042) 国家863高技术研究发展计划(No.2007AA01Z325) 山东省自然科学基金(No.ZR2009GQ013)
关键词 离群点检测 粗糙集 数据挖掘 序列 知识熵 属性重要性 outlier detection rough sets data mining sequence knowledge entropy significance of attribute
  • 相关文献

参考文献36

  • 1Hawkins D. Identifications of Outliers [ M]. London: Chapman and Hall, 1980. 被引量:1
  • 2Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets [ A ]. Proc of the 24th VLDB Conference [ C ]. New York:Morgan Kaufinann, 1998.392 - 403. 被引量:1
  • 3Knorr E, et al. Distance-based outliers: algorithms and applica tions[ J]. Very Large Databases, 2000,8(3 - 4) : 237 - 253. 被引量:1
  • 4Shannon C E. The mathematical theory of communication[ J ]. Bell System Technical Journal, 1948,27(3 - 4) :373 - 423. 被引量:1
  • 5Rousseeuw P J, Leroy A M. Robust Regression and Outlier De tectionEM]. New York: John Wiley & Sons, 1987. 被引量:1
  • 6Johnson T, et al. Fast computation of 2 dimensional depth contours[A]. Proc of the 4th Int Conf on Knowledge Discovery and Data Mining[ C]. New York: AAAI Press, 1998. 224 - 228. 被引量:1
  • 7Jain A K,et al. Data clustering: a review[ J] .ACM Computing Surveys, 1999,31(3) :264 - 323. 被引量:1
  • 8Breunig M M, et al. LOF: identifying density-based local out- Hers[A] .Proc of the 2000 ACM SIGMOD Int Conf on Man- agement of Data[ C] .Dallas:ACM Press,2000.93 - 104. 被引量:1
  • 9Jiang F, et al. Outlier detection using rough set theory[ A]. Proc of the 10th Int Conf on Rough Sets,Fuzzy Sets,Data Mining, and Granular Computing [ C ]. Canada: Springer-Verlag, 2005. 79 - 87. 被引量:1
  • 10Jiang F, et al. A ugh set approach to outlier detection[ J]. In- ternational Journal of General Systems, 2008, 37 ( 5 ) : 519 - 536. 被引量:1

二级参考文献49

共引文献476

同被引文献142

引证文献16

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部