期刊文献+

差分进化算法GVF Snake模型在PET图像分割中的应用 被引量:13

Application of DE algorithm and improved GVF Snake model in segmentation of PET image
原文传递
导出
摘要 利用PET图像进行诊治时需要对人体病灶精确定位,PET图像中病灶目标区域的分割是早期诊断与治疗的前提和关键。基于传统Snake模型的方法在PET图像分割时存在对初始轮廓过于敏感,难以收敛到目标凹型区域等问题,为此将GVF Snake模型引入PET图像的分割中。为防止GVF Snake模型陷入局部最优,进一步利用差分进化(DE)算法的全局优化特性对GVF Snake模型分割的结果进行优化,提高PET图像分割精度。实验结果表明,该方法能有效地对PET图像中的病灶目标区域进行分割,可避免陷入局部最优且具有良好的实时性。 Focus contour extraction of PET images is of immense significance for the treatment of malignant tumors and cardiovascular diseases etc. However, the commonly used method based on the traditional snake model is sensitive to the position of the initial curve and it's hard to converge to the concave boundary of the object. To address these problems, an improved GVF Snake model based on DE algorithm is proposed in this paper. The results from comparative experiments of extracting contour of human brain demonstrate that the new model is an effective method for segmenting the PET images.
作者 毕晓君 肖婧
出处 《中国图象图形学报》 CSCD 北大核心 2011年第3期382-388,共7页 Journal of Image and Graphics
关键词 PET图像分割 SNAKE模型 GVF SNAKE模型 差分进化算法 PET image segmentation Snake model GVF Snake model DE algorithm
  • 相关文献

参考文献7

  • 1简毅强..PET图像重建关键技术研究[D].浙江大学,2008:
  • 2骆国程,赵永界.PET图像中基于形态学和样条模型方法进行心脏的边缘提取[J].CT理论与应用研究(中英文),2002,11(3):1-6. 被引量:1
  • 3Xu Chenyang, Prince J L. Snakes, shapes, and gradient vector flow [ J ]. IEEE Transactions on Image Processing, 1998,7 (3) : 359-369. 被引量:1
  • 4Liang Jia, Ding Guangyi, Wu Yuwei, et al. Segmentation of the left ventricle from cardiac MR images based on radial GVF snake [C]//International Conference on BioMedical Engineering and Informatics. Washington DC, USA :IEEE Press, 2008:238-242. 被引量:1
  • 5Liu F, Kijewski P K. Liver segmentation for CT images using GVF Snake [J]. Journal of Medical Physics, 2005, 32( 12): 3699 -3706. 被引量:1
  • 6Kass M, Witkin A, Terzopoulos D, et al. Snakes: active contour models [J].Proceeding of International Journal of Computer Vision, 1988, 1(4):321-331. 被引量:1
  • 7Williams DJ, Shah M. A fast algorithm for active contours and curvature estimation [J]. CVGIP : Image Understanding, 1992, 55(1) :14-26. 被引量:1

二级参考文献9

  • 1Kenneth. R. Castleman. Digital Image Processing. Prentice-Hall Press. 1998. 被引量:1
  • 2李象霖, 数字图像处理.北京:中国科学技术大学研究生院,1999. 被引量:1
  • 3P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing:Theory and Application. Reidel,1987. 被引量:1
  • 4E.R. Dougherty. An Introduction to Morphological Image Processing,SPIE Press,Bellingham,WA,1992. 被引量:1
  • 5G. Borgefors. Distance Transformation in Arbitrary Dimensions. Computer Vision,Graphics and Image Proc. 1986. 被引量:1
  • 6M. Kass,A. Witkin,and D. Terzopoulos. Snakes:Active contour models. In Proceedings of the first international conference on Computer Vision,1987. 被引量:1
  • 7D. Rueckert and P. Burger. Contour fitting using an adaptive spline model. In Proc. 6th British Machine Vision Conference (BMVC'95), Birmingham,UK,September 1995. 被引量:1
  • 8J.V. Miller,D.E. Breen,W.E. Lorersen,R.M. O'Bara,and M.J. Wozny. Geometrically deformed models:A method for extracting closed geometric models from volumn data. Computer Graphics,July 1991. 被引量:1
  • 9周心明,兰赛,徐燕.图像处理中几种边缘检测算法的比较[J].现代电力,2000,17(3):65-69. 被引量:96

同被引文献110

引证文献13

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部