期刊文献+

OCPA仿生自主学习系统及在机器人姿态平衡控制上的应用 被引量:5

OCPA Bionic Autonomous Learning System and Its Application to Robot Poster Balance Control
原文传递
导出
摘要 针对本质上非线性、强耦合的两轮自平衡机器人复杂动态系统,构造操作条件反射概率自动机(OCPA)仿生自主学习系统.OCPA仿生自主学习系统是一个基于Skinner操作条件反射的概率自动机,主要特征在于模拟生物的操作条件反射机制,具有仿生的自组织功能,包括自学习和自适应功能,可用于描述、模拟、设计各种自组织系统.从理论上分析OCPA学习系统的操作条件反射学习机制的收敛性.应用于两轮机器人姿态平衡控制的仿真和实验结果均表明,设计的OCPA仿生自主学习系统不需要系统的模型,通过模拟生物的操作条件反射机制,自组织地渐进形成、发展和完善其姿态平衡控制技能. An operant conditioning probabilistic automation (OCPA) bionic autonomous learning system is constructed according to nonlinear, strong-coupling and complex two-wheeled self-balancing robot dynamic system. The OCPA bionic autonomous learning system is a probabilistic automaton based on Skinner operant conditioning whose main character lies in simulating the operant conditioning mechanism of biology. And it has bionic self-organization function which contains the self-learning and adaptive functions, and thus the OCPA automaton can be used to describe, simulate and design various self-organization systems. The convergence of operant conditioning learning algorithm of OCPA learning system is proved theoretically. The results of both simulation and experiment applied to two-wheeled robot poster balance control indicate that the OCPA learning system does not require the robot model, and the motion balanced skills of robot are formed, developed and perfected gradually by simulating the operant conditioning mechanism of biology.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第1期138-146,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60774077) 国家863计划项目(No.2007AA04Z226) 北京市教委重点项目(No.KZ200810005002)资助
关键词 操作条件反射概率自动机(OCPA)仿生自主学习 操作条件反射 两轮机器人 姿态平衡控制 Operant Conditioning Probabilistic Automation (OCPA) Bionic Autonomous Learning,Operant Conditioning, Two-Wheeled Robot, Poster Balance Control
  • 相关文献

参考文献12

  • 1Urakubo T, Tsuchiya K, Tsujita K. Motion Control of a Two-Wheeled Mobile Robot. Advanced Robotics, 2001, 15(7) : 711-728. 被引量:1
  • 2黄永志,陈卫东.两轮移动机器人运动控制系统的设计与实现[J].机器人,2004,26(1):40-44. 被引量:46
  • 3吴克河,李为,柳长安,李国栋.双轮驱动式移动机器人动力学控制[J].宇航学报,2006,27(2):272-275. 被引量:12
  • 4Kozlowski K, Pazderski D. Stabilization of Two-Wheeled Mobile Ro-bot Using Smooth Control Law: Experiment Study // Proc of the IEEE International Conference on Robotics and Automation. Orlan-do, USA, 2006:3387-3392. 被引量:1
  • 5McFartand D, Bosser T. Intelligent Behavior in Animals and Ro- bots. Cambridge, USA: MIT Press, 1993. 被引量:1
  • 6Aristidis L. Reinforcement Learning Using the Stochastic Fuzzy Min- Max Neural Network. Neural Processing Letters, 2001,13(3):213-220. 被引量:1
  • 7Anderson C W. Learning to Control an Inverted Pendulum Using Neural Networks. IEEE Control System Magazine, 1989,9(3):31-37. 被引量:1
  • 8蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制[J].自动化学报,1998,24(5):662-666. 被引量:55
  • 9Skinner B F. Two Types of Conditioned Reflex and a Pseudo Type. Journal of General Psychology, 1935, 12:66-77. 被引量:1
  • 10Saksida L M, Touretzky D S. Application of a Model of Instrumen-tal Conditioning to Mobile Robot Control// Proc of the Conference on Sensor Fusion and Decentralized Control in Autonomous Robotic Systems. Pittsburgh, USA, 1997 : 55-66. 被引量:1

二级参考文献5

共引文献109

同被引文献70

  • 1蒋林,闫继宏,臧希喆,赵杰.一种新的超声波绝对定位方法[J].吉林大学学报(工学版),2009,39(1):188-193. 被引量:12
  • 2Cang Y, Yung N H C, Danwei Wang. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(1): 17-27. 被引量:1
  • 3Meng Joo Er, Chang Deng. Obstacle avoidance of a mobile robot using hybrid learning approach[J]. IEEE Trans on Industrial Electronics, 2005, 52(3): 898-905. 被引量:1
  • 4Meng Joo Er, Yi Zhou. Automatic generation of fuzzy inference systems via unsupervised learning[J]. Neural Networks, 2008, 21(10): 1556-1566. 被引量:1
  • 5Boubertakh H, Tadjine M, Glorennec P Y. A new mobile robot navigation method using fuzzy logic and a modified Q-learning algorithm[J]. J of Intelligent and Fuzzy Systems, 2010, 21(1/2): 113-119. 被引量:1
  • 6Narendra K S, Thathchar M A L. Learning automat: An introduction[M]. Upper Saddle River: Prentice-Hall, 1989. 被引量:1
  • 7Pierce D, Kuipers B. Learning to explore and build maps[C]. Proc of the National Conf on Artificial Intelligence. Seattle: MIT Press, 1994: 264-1271. 被引量:1
  • 8Dean T, Anqluin D, Basye K, et al. Inferring finite automata with stochastic output functions and an application to map learning[J]. Machine Learning, 1995, 18(1): 81-108. 被引量:1
  • 9EI-Osery A, Jamshidi M. A stochastic learning automaton based autonomous control of robotic agents[C]. IEEElnt Conf on Systems, Man and Cybernetics. Yasmine Hammamet: IEEE Press, 2002: 100-105. 被引量:1
  • 10Wang X, Ray A, Lee P, et al. Optimal control of robot behaviour using language measure[J]. Int J of Vehicle Autonomous Systems, 2004, 2(3/4): 147-167. 被引量:1

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部