期刊文献+

一种新的基于3D信息的脑肿瘤分割和评估系统 被引量:3

Brain tumor segmentation and evaluation system based on 3-D information
原文传递
导出
摘要 该文设计了一种基于支持向量机(support vector machine,SVM)的、关于MRI脑肿瘤图像的分割和评估系统,以便通过计算机辅助医疗来提高脑肿瘤的诊断和治疗过程中的效率和效果。该系统整合了一种新的特征选择方法(核空间类离散度),处理MRI图像序列所包含的三维数据信息并评估肿瘤体积的变化。整个系统实现了半自动运行,处理过程仅仅只有一次人工参与。通过实际病例上的实验验证、结果的定量评估和方法的比较,证明了该系统的有效性。 A system was developed for brain tumor segmentation and evaluation in magnetic resonance images(MRI) based on support vector machines(SVMs).The objective of this system was to improve the effectiveness and efficiency of computer aided diagnosis.3-D information from MRI sequences is utilized through a feature selection method and kernel class separability(KCS) to evaluate the tumor volume change.This system is semi-automatic with very simple operator interaction.Comparison among several methods using real patient data demonstrate the system effectiveness.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期96-100,共5页 Journal of Tsinghua University(Science and Technology)
关键词 图像分割 脑肿瘤 三维信息 支持向量机 image segmentation brain tumor 3-D information support vector machine(SVM)
  • 相关文献

参考文献17

  • 1Levman J, Leung T, Causer P, et al. Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines [J]. IEEE Trans Med Imaging, 2008, 27(5): 688-696. 被引量:1
  • 2Ruan S, Lebonvallet S, Merabet A, et al. Tumor segmentation from a multi-spectral MRI images by using support vector machine classification [C]// ISBI. Arlington: IEEE Press, 2007:1236 - 1239. 被引量:1
  • 3Metaxas D N, Qian Z, Huang X, et al. Hybrid deformable models for medical segmentation and registration [C]// ICARCV. Singapore: IEEE Press, 2006:5-8. 被引量:1
  • 4Iftekharuddin K M, Zheng J, Islam M A, et al. Brain tumor detection in MRI: technique and statistical validation [C]// ACSSC. Pacific Grove: IEEE Press, 2006:1983 -1987. 被引量:1
  • 5Xuan X, Liao Q M. Statistical structure analysis in MRI brain tumor segmentation [C]// ICIG. Chengdu: IEEE Press, 2007: 421-426. 被引量:1
  • 6Cai H M, Verma R, Ou Y, et al. Probabilistic segmentation of brain tumors based on multi-modality magnetic resonanee images [C]// ISBI. Arlington: IEEE Press, 2007:600 - 603. 被引量:1
  • 7Clark M C, Hall L O, Goldgof D B, et al. MRI segmentation using fuzzy clustering techniques [J]. IEEE Engineering in medical and biology, 1994, 13(5): 730-742. 被引量:1
  • 8Clark M C, Hall L O, Goldgof D B, et al. Automatic tumor segmentation using knowledge-Based techniques [J]. IEEE Trans Med Imaging, 1998, 17(2) : 238 - 251. 被引量:1
  • 9Fletcher Heath L M, Hall L O, Goldgof D B, et al. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images [J]. Artifical Intelligence in Medicine, 2001, 21(1): 43- 63. 被引量:1
  • 10Wells W M, Grimson W E, Kikinis R, et al. Adaptive segmentation of MRI data [J]. IEEE Trans Med Imaging, 1996, 15(4): 429-442. 被引量:1

同被引文献32

  • 1阳春华,王觉,朱红求,桂卫华.一种混合核函数SVM建模方法及其应用[J].控制工程,2010,17(4):524-526. 被引量:11
  • 2徐海祥,喻莉,朱光喜,张翔,田金文.基于支持向量机的磁共振脑组织图像分割[J].中国图象图形学报,2005,10(10):1275-1280. 被引量:25
  • 3高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 4Zhang N, Ruan S, Lebonvallet S, et al. Kernel feature selection tofuse multi-spectral MRI images for brain tumor segmentation[J].Computer Vision Image Understanding, 2011, 115(2): 256-69. 被引量:1
  • 5Megha PA, Ram MR. Efficient Fuzzy clustering based approach tobrain tumor segmentation on MR images[J]. Commun CompInform Sci, 2011, 250: 790-5. 被引量:1
  • 6Li C, Xu C, Gui C, et al. Distance regularized level set evolutionand its application to image segmentation[J]. IEEE Trans ImageProcess, 2010, 19(12): 3243-54. 被引量:1
  • 7Dina AD, Samy SG, Gamal MS. Auto-mated brain tumor detectionand identification using image processing and probabilistic neuralnetwork techniques[J]. Int J Image Proc Vis Commun, 2012, 1(2):1-8. 被引量:1
  • 8Smits GF, Jordaan E. Improved SVM Regression using Mixtures ofKernels[C]. Proceedings of the 2002 International Joint Conferenceon Neural Networks. Hawaii: IEEE, 2002: 2785-90. 被引量:1
  • 9Reddy BV, KumarDrP, Reddydr PB, et al. Identifying brain tumourfrom MRI image using modified FCM and support vector machine[J]. Int J Comp Eng Tech, 2013, 4(1): 244-62. 被引量:1
  • 10Lin HT, Lin CJ. A study on sigmoid kernels for SVM and thetraining of non-PSD kernels by SMO-type methods[R]. NationalTaiwan University, 2003. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部