摘要
对空间曲面的分片算法进行了研究,以高斯曲率的绝对值对面积的积分与曲面面积的比值作为曲面分片系数,并以各曲面单元分片系数的和作为曲面分片的控制值。在给定分片控制值的约束条件下,通过对任意空间曲面进行离散化、反算拟合及曲面单元累加实现曲面分片。控制各曲面片分片系数累加值使之小于一定的控制值以使各分片近似可展。以空间双曲曲面为算例对分片算法的有效性进行了验证。
A surface partition algorithm is presented in this paper.The partition coefficient for a surface partition is defined as the ratio of the integration of the absolute value of Gaussian curvature of the surface to its area.The controlling value for the surface partition is defined by the summation of the partition coefficient of the accumulated surface elements.A doubly curved surface is divided into several patches through discretizing, re-fitting and surface element accumulating with the controlling value of surface partition is given.The partitioned surface patch can be approximately developed by controlling the summating value of the accumulated surface elements within certain controlling value.An example is given to show the effectiveness of the algorithm.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第6期202-204,222,共4页
Computer Engineering and Applications
基金
国家"十一五"科技支撑计划重大项目资助(No.2007BAF27B02)
国家863/CIMS主题资助(No.2007AA04Z139)
关键词
高斯曲率
曲面分片
曲面反算拟合
Gaussian curvature
surthce partition
surface re-fitting