期刊文献+

基于多尺度稀疏LSSVM的时间序列预测

Multi-Scale Least Squares Support Vector Machine for Time Series Forecasting
下载PDF
导出
摘要 最小二乘支持向量机在提高了支持向量机的运算速度的同时,失去了解的稀疏性。构造的多尺度稀疏最小二乘支持向量机,首先通过小波包分解对于数据进行多尺度描述,同时采用最小二乘支持向量机的学习算法获得数据之间的尺度相关性,可以实现解的稀疏性和可解释性,从而实现了系统的多尺度分解、子系统建模与合成的一体化。通过在时间序列预测上的应用可以发现,此模型在获得稀疏解的同时,极大地提高了系统的性能。而且,可以获得输出结果在不同尺度上的贡献度,增加了系统的可解释性。 Least squares support vector machine achieves faster speed at the cost of loosing the sparseness. A new method, called multiscale sparse least squares support vector machine, was proposed to obtain the sparseness and interpretability. It was the very core of this method that the multi-scale decomposition, modeling for the sub-systems and the integration is achieved adaptively. The multi-scale decomposition for the original data was obtained by wavelet packet and the correlations among these scales are obtained by the way of learning using multi-scale sparse least square support vector machine. Experiments in time series prediction demonstrate that multi-scale sparse least squares support vector machine can achieve excellent performance and sparseness at one time. In addition, the effect of different scales for the output can be achieved. It improves the interpretability and gives another way for model evaluation.
作者 肖强
出处 《计算机技术与发展》 2011年第3期117-120,124,共5页 Computer Technology and Development
基金 国核院科研业务专项基金项目(#100-KY2010-FZ-E001)
关键词 多尺度稀疏最小二乘支持向量机 小波包分解 最小二乘支持向量机 金融时间序列 时间序列预测 multi-scale least squares support vector machine wavelet package decomposition least squares support vector machine financial time series time series prediction
  • 相关文献

参考文献12

二级参考文献24

  • 1梁循.数据挖掘:建模、算法、应用和系统[J].计算机技术与发展,2006,16(1):1-4. 被引量:40
  • 2崔锦泰.小波分析导论(中译本)[M].西安:西安交通大学出版社,1992.. 被引量:1
  • 3徐耀群,孙明.混沌神经网络时间序列的研究[C]∥中国控制与决策学术年会论文集.沈阳:东北大学出版社,2006:397-402. 被引量:1
  • 4Jiang Jianguo,Shao Kuizhi,Wei Yuheng,et al. Chaotic Neural Network Model for Output Prediction of Polymer Flooding [ C] // Proceedings of the 2007. IEEE, International Conference on Mechatronics and Automation. Harbin, Heilong jiang, China: IEEE, 2007 : 2347 - 2351. 被引量:1
  • 5梁循 陈华 杨健 等.基于互联网股市信息量和神经网络的股价波动率预测.金融科技,2005,5(109):92-96. 被引量:1
  • 6Han J,Kamber M.数据挖掘原理与技术[M].北京:机械工业出版社,2001. 被引量:1
  • 7Hagan M T,Demuthl H B,Beale M H. Neural Network Design [M]. [s. l. ] :PWS Publishing Company,1995. 被引量:1
  • 8Osier C, Chang K. Head, shoulders: Not just a flaky pattern [M ]. Staff Report No. 4, Federal Reserve Bank of New York, 1995. 被引量:1
  • 9Leigh W, Paz N, Purvis R. Market timing: a test of a charting heuristic[ J ]. Economies Letters, 2002,77 ( 1 ) : 55 - 63. 被引量:1
  • 10Leigh W, Modani N, Hightower R. A computational implementation of stock charting: abrupt volume increase as signal for movement in New York Stock Exchange Composite Index [ J ]. Decision Support Systems, 2004,37 (4) : 515 - 530. 被引量:1

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部