期刊文献+

融合浅层句法分析的蛋白质互作用信息抽取方法 被引量:2

Protein-protein interaction extraction method using shallow parsing
下载PDF
导出
摘要 针对传统基于机器学习方法在蛋白质互作用信息抽取中的缺陷,提出融合浅层句法分析的信息抽取方法,该方法将候选的句子进行浅层句法分析,包括对短语切分、同位语分析、并列结构分析、句子切分的处理。经过该步骤,句子被划分为多个单独的语法单元。然后,对每个语法单元采用基于最大熵的分类方法进行蛋白质互作用信息抽取。该方法在BC-PPI语料库中获得了62.1%的F1性能。比较实验结果表明,该方法能有效减少误判和漏判,提高信息抽取的性能。 In order to solve problems of protein-protein interaction extraction based on traditional machine learning methods,this paper proposed an information extraction method using shallow parsing.This method first processed candidate sentences by shallow parsing including phrase chunking,appositive parsing,coordinative parsing and sentence splitting.After this step,divided sentences into multiple individual grammar units.Secondly,extracted protein-protein interactions from each unit using maximum entropy classification method.Tested in the BC-PPI corpus,this method achieved F1 value of 62.1%.Comparative experiments show the method decreases false positives and false negatives efficiently and improves performances of information extraction.
出处 《计算机应用研究》 CSCD 北大核心 2011年第3期972-975,共4页 Application Research of Computers
基金 国家高科技发展规划项目(2006AA01Z411)
关键词 蛋白质互作用 信息抽取 浅层句法分析 最大熵 protein-protein interaction(PPI) information extraction shallow parsing maximum entropy
  • 相关文献

参考文献9

  • 1YAKUSHIJI A,TATEISI Y,MIYAO Y,et al.Event extraction from biomedical papers using a full parser[C] //Proc of the 6th Pacific Symposium on Biocomputing.2001:408-419. 被引量:1
  • 2HUANG Min-lie,ZHU Xiao-yan,YU Hao.Discovering patterns to extract protein-protein interactions from full biomedical texts[J].Bioinformatics,2004,20 (18):3604-3612. 被引量:1
  • 3MITSUMORI T,MURATA M,FUKUDA Y.Extracting protein-protein interaction information from biomedical text with SVM[J].IEICE Trans on Information and Systems,2006,E89-D (8):2464-2466. 被引量:1
  • 4SMITH L,RINDFLESCH T,WILBUR W J.MedPost:a part-of-speech tagger for biomedical text[J].Bioinformatics,2004,20 (14):2320-2321. 被引量:1
  • 5RAMSHAW L A,MARCUS M P.Text chunking using transformation-based learning[C] //Proc of ACL the 3rd Workshop on Very Large Corpora.1995:82-94. 被引量:1
  • 6孔芳,周国栋,朱巧明,钱培德.指代消解综述[J].计算机工程,2010,36(8):33-36. 被引量:13
  • 7XIAO Juan,SU Jian,ZHOU Guo-dong.Protain-protein interaction extraction:a supervised learning approach[C] //Proc of the ist International Symposium on Semantic Mining in Biomedicine.2005:51-59. 被引量:1
  • 8PLAKE C,HAKENBERG J,LESER U.Optimizing syntax-patterns for diacovering protein-protein interactions[C] //Proc of ACM Symposium oh Applied Computing.Santa Fe:ACM,2005:195-201. 被引量:1
  • 9NIELSEH L A.Extracting prrotein-protein interactions using simple contextual features[C] //Proc of BioNLP Workshop.Morristown:Association for Computational Linguistics,2006:120-121. 被引量:1

二级参考文献6

  • 1Soon W M,Ng H T,Lim C Y.A Machine Learning Approach to Coreference Resolution of Noun Phrases[J].Computational Linguistics,2001,27(4):521-544. 被引量:1
  • 2Yang Xiaofeng,Zhou Guodong,Su Jian.Coreference Resolution Using Competition Learning Approach[C]//Proc.of ACL'03.Sapporo,Japan:[s.n.],2003. 被引量:1
  • 3Yang Xiaofeng,Su Jian,Tan Chew Lim.Kernel-based Pronoun Resolution with Structured Syntactic Knowledge[C]//Proc.of ACL'06.Sydney,Australia:[s.n.],2006. 被引量:1
  • 4Zhou Guodong,Kong Fang,Zhu Qiaoming.Context-sensitive Convolution Tree Kernel for Pronoun Resolution[C]//Proc.of IJCNLP'08.Hyderabad,India:[s.n.],2008. 被引量:1
  • 5Vincent N G.Semantic Class Induction and Coreference Resolution[C]//Proc.of ACL'07.Prague,Czech Republic:[s.n.],2007. 被引量:1
  • 6王厚峰,何婷婷.汉语中人称代词的消解研究[J].计算机学报,2001,24(2):136-143. 被引量:36

共引文献12

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部