期刊文献+

基于语义绑定的分层视觉词汇库的图像检索

Image Retrieval Research on Semantic Binding Hierarchical Visual Vocabulary
下载PDF
导出
摘要 提出了一种解析复杂图像语义的模型——分层语义模型,给出了解析复杂语义和构造模型的方法.提出了基于分层语义模型的语义绑定的分层视觉词汇库的概念,给出了构造词汇库的具体方法和步骤,同时对词汇库细节问题给出了解决的方法.将提出的分层视觉词汇库应用于基于内容和语义的图像检索中,并给出了构建图像检索系统的方法和检索图像的步骤.该模型在图像检索中可同时满足基于图像内容的检索方式和基于图像语义的检索方式.实验结果表明,该方法比基于SIFT(Scale Invariant Feature Transform)特征向量的图像检索方法具有更好的性能. This paper proposed a hierarchical semantic model which can destruct complex image semantic,and presented the method to destruct complex semantic and to construct model.Then the paper proposed the concept of semantic binding hierarchical visual vocabulary which is based on the hierarchical semantic model and also presented the method and steps to build the visual vocabulary,and the resolution to some detail problems about vocabulary as well.The paper applied the visual vocabulary into the content and semantic based image retrieval and proposed the steps to construct the image retrieving system and to retrieving images.The proposed model and method can support both the image retrieval based on image content and the image retrieval based on image semantic.The experiments prove the better performance of the model and method compared with the traditional SIFT(Scale Invariant Feature Transform) feature based image retrieval.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第2期154-158,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(61071153 60802057) 上海市青年科技启明星计划(10QA1403700)资助项目
关键词 图像语义 分层语义模型 分层视觉词汇库 图像检索 image semantic hierarchical semantic model hierarchical visual vocabulary image retrieval
  • 相关文献

参考文献1

二级参考文献11

  • 1向友君,谢胜利.图像检索技术综述[J].重庆邮电学院学报(自然科学版),2006,18(3):348-354. 被引量:39
  • 2TONG L. Scale-space theory: a basic tool for analyzing structures at different scales[ J] . Journal of Applied Statistics, 1994, 21 ( 2 ) :224- 270 . 被引量:1
  • 3LOW D G. Object recognition from local scale-invariant features [ C] / /Proc of the 7th IEEE International Conference on Computer Vision.Kerkyra, Greece: [ s. n. ] , 1999 : 1150 -1157 . 被引量:1
  • 4LOWE D G. Distinctive image features from sacle-invariant keypoints [ J] . International Journal of Computer Vision , 2004, 60 ( 2) : 91-110. 被引量:1
  • 5JORDAN M I. Properties of kernels and the Gaussian kernel [ M] .Topics in Learning and Decision Making, 2004 . 被引量:1
  • 6ARYA S, MOUNT D M, NETANYAHUN S, et al. An optimal algorithm for approximate nearest neighbor searching[ J] . Journal of the ACM, 1998, 45 ( 6) : 891- 923 . 被引量:1
  • 7BEIS J, LOWE D G. Shape indexing using approximate nearest neighbour search in high-dimensional spaces[ C] / /Proc of Conference on Computer Vision and Pattern Recognition. 1997 : 1000 -1006 . 被引量:1
  • 8HARRIS C, STEPHENS M. A combined corner and edge detector [ C] / / Proc of the 4th Alvey Vision Conference, 1988: 147-151 . 被引量:1
  • 9CROWLEY J L, PARKER A C. A representation for shape based on peaks and ridges in the difference of low-pass transform[ J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1984, 6( 2) : 156-170 . 被引量:1
  • 10FRIEDMAN J H, BENTLEY J L, FINKEL R A. An algorithm for finding best matches in logarithmic expected time[ J] . ACM Trans on Mathematical Software , 1977, 3 ( 3 ) : 209- 226. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部