期刊文献+

基于纵向数据非线性混合模型的杉木林优势木平均高研究 被引量:12

Study on Dominant Height Growth of Fir Plantations Based on a Nonlinear Mixed Modeling Approach for Longitudinal Data
下载PDF
导出
摘要 以江西省大岗山实验局不同初植密度的杉木林为研究对象,选择修改的Richards模型形式,考虑样地效应,采用SAS软件进行非线性混合效应模型的模拟,利用AIC和BIC值评价模型模拟效果。在此基础上考虑优势木平均高连续观测数据的时间序列相关性,并把初植密度以哑变量形式考虑进去,再进行混合模型的模拟。最后,利用验证数据对混合模型方法与传统的非线性回归模拟方法进行精度比较。研究结果表明,修改的Richards形式的优势木平均高与林龄关系的非线性混合效应模型,其估计精度比传统的回归模型估计精度明显提高,增加随机效应参数个数能够提高模型的估计精度。一阶自回归误差结构矩阵模型在解释优势木平均高的时间序列相关性时不仅提高了混合模型的模拟精度,而且能够很好的表达连续观测数据间误差分布情况;同时考虑样地的随机效应、观测数据的时间序列相关性及不同初植密度的混合模型模拟精度比传统的非线性回归方法模拟精度高。 The improvement on the dominant height growth implies in better productivity estimation due to the forest height growth is directly related with the site characteristics and forest productivity.A modified Richards growth model with nonlinear mixed effects is simulated used SAS software for modeling fir plantation dominant height growth in conjunction with different plantation density in Dagangshan Experiment Bureau of Jiangxi Province.Akaike Information Criterion(AIC) and Bayesian Information Criterion(BIC) were used in model performance evaluation.Within-plot time series error autocorrelation of dominant height growth data and different plantation density expressed with dummy variable were taken into account in mixed model.Finally,the precision of mixed models was compared with the precision of conventional nonlinear ordinary regression analysis method based on validation data.The result showed that the precision of modified Richards forms nonlinear mixed effect model which takes into account plot's random effect was better than that of conventional regression model.Increasing the number of random effect parameter can increase the precision of model.First-order autoregressive error model in explaining time series error autocorrelation of dominant height growth not only improved simulated precision,but also can describe error distribution of sequence observation data;The precision of mixed model considering plot random effects,time series error autocorrelation and different plantation density at one time is better than that of ordinary regression analysis method.
作者 李春明
出处 《林业科学研究》 CSCD 北大核心 2011年第1期68-73,共6页 Forest Research
基金 中央级公益性科研院所基本科研业务费专项资金课题(IFRIT200901) 国家"十一五"科技支撑课题"东北天然林保护与可持续经营技术试验示范"(2006BAD03A08)部分研究内容
关键词 杉木 优势木平均高 非线性混合效应模型 时间序列相关性 fir dominant height growth nonlinear mixed effect model time series error autocorrelation
  • 相关文献

参考文献12

  • 1孟宪宇.测树学[M].第2版,北京:中国林业出版社,1994. 被引量:1
  • 2Hall D B,Bailey R L.Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models[J].Forest Science,2001,47:311-321. 被引量:1
  • 3Fang Z,Bailey B L.Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J].Forest Science,2001,47:287-300. 被引量:1
  • 4Calegario N,Daniels R F,Maestri B,et al.Modeling dominant height growth based on nonlinear mixed-effects model:a clonal Eucalyptus plantation case study[J].Forest Ecology and Management,2005,204:11-21. 被引量:1
  • 5李永慈,唐守正.用Mixed和Nlmixed过程建立混合生长模型[J].林业科学研究,2004,17(3):279-283. 被引量:35
  • 6Castedo F,Dieguez-Aranda U,Barrio M.A generalized heightdiameter including random components for radiata pine plantations in northwestern Spain[J].Forest Ecology and Management,2006,229:202-213. 被引量:1
  • 7洪玲霞.初植密度、间伐对杉木林分优势高生长过程的影响[J].林业科学研究,1997,10(4):448-452. 被引量:7
  • 8章允清.卫闽林场杉木人工林经验收获表的研制[J].福建林业科技,2006,33(3):47-51. 被引量:17
  • 9Dorado F C,Ulises D A,Marcos B A.et al.A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain[J].Forest Ecology and Management,2006.229:202-213. 被引量:1
  • 10Fang Z,Bailey R L,Shiver B D.A multivariate simultaneous prediction system for stand growth and yield with fixed and random effects[J].Forest Science,2001,47:550-562. 被引量:1

二级参考文献12

  • 1吴载璋,吴锡麟.福建杉木人工林生长模型的研究[J].福建林业科技,2004,31(4):11-14. 被引量:23
  • 2唐守正,李希菲.同龄纯林自稀疏方程验证[J].林业科学,1995,31(1):27-34. 被引量:14
  • 3刘景芳 童书振.杉木林经营新技术[J].世界林业研究,1996,9:47-48. 被引量:11
  • 4张少昂.兴安落叶松天然林林分生长模型和可变密度收获表的研究[J].东北林业大学学报,1986,14(3):17-25. 被引量:14
  • 5Tang S Z,Meng F R.Analyzing parameters of grouth and yield models for Chinese fir provenances with a linear mixed approach[J].Silvae Genetica,2001,50:140-145 被引量:1
  • 6SAS Institute Inc.SAS/STAT User's Guide Version 8[M]. SAS Institute Inc, Cary,NC,USA,1999 被引量:1
  • 7Daniel B H, Robert L B. Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models[J]. Forest Science,2001, 47(3):311-321 被引量:1
  • 8José Pinheiro,Douglas M Bates. Mixed-Effects Models in S and S-PLUS[M]. Springer-Verlag New York, Inc,2000 被引量:1
  • 9王冬梅.大青山实验局森林轮伐预估模型及其应用[J].林业科学研究,1991,4:50-56. 被引量:2
  • 10郎奎健,唐守正.IBMPC系列程序集[M]中国林业出版社,1989. 被引量:1

共引文献55

同被引文献150

引证文献12

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部