摘要
设Mn是anti-de Sitter空间H1n+1(-1)中具有常标准数量曲率R的完备类空超曲面.令R=-1-R≥0,证明如果Mn的第二基本形模长平方S满足sup S≤(n-1)(nR+2)/(n-2)+(n-2)/(nR+2),则sup S=n,Mn是全脐的;或sup S=(n-1)(nR+2)/(n-2)+(n-2)/(nR+2),此时Mn等距于黎曼积流形.
Let Mn be a complete space-like hypersurfaces with constant normalized scalar curvature R in anti-de Sitter space Hn+11(-1) and assume R=-1-R≥0.In this paper,we proved that,if the squared norm S of the second fundamental form of Mn satisfied sup S≤(n-1)(nR+2)/(n-2)+(n-2)/(nR+2),then sup S=n and Mn would be a totally umbilical hypersurface;or sup S=(n-1)(nR+2)/(n-2)+(n-2)/(nR+2),Mn would be isometric to H1(-sec2 t) × Hn-1(-csc2t),t ∈(0,π/2).
出处
《兰州理工大学学报》
CAS
北大核心
2011年第1期146-149,共4页
Journal of Lanzhou University of Technology