期刊文献+

庇护所的空间结构对宿主—寄生物系统时空动态的影响 被引量:2

Spatial structure of refuges influence the spatiotemporal dynamics of host-parasitoid systems
下载PDF
导出
摘要 构造了一个具有空间庇护所的宿主寄生物种群模型.通过运用IBM模型,研究了庇护所的数量和空间结构对种群时空动态的影响.结果表明:庇护所数量的增加对宿主和寄生物种群的数量变化有相反的作用,庇护所数量的增加导致宿主种群大小增加,寄生物种群大小下降.庇护所数量和空间聚集度的增加对寄生物种群的灭绝也有相反的作用,高比例的庇护所斑块不利于寄生物种群,但高聚集的庇护所生境有利于寄生物种群.随着庇护所的增加,空间种群呈现出聚集型的空间分布.这些结果对防止生物入侵和害虫控制都有一定的指导作用. A spatial host-parasitoid model was constructed that incorporated the spatial refuge. Using IBM model, the effects of the number and the spatial structures of refuges on the population spatiotemporal dynamics were studied. The results suggested that the increase of the refuge number has the opposite effect on host sizes and parasitoid sizes and that it results in the increase of host sizes and decrease of parasitoid sizes. The increases in number and spatial clustering degree also have opposite effects on the extinction of parasitoid population and a high proportion of refuge patches are detrimental to host population; however, high clustering degree is beneficial to parasitoid population. Moreover, the increase of the number of refuges can result in aggregated distribution of species. These results may help us control pest and prevent biological invasions.
作者 刘志广 赵雪
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期62-65,共4页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(41001242) 河南省教育厅基金项目(2011A180003) 河南大学基金项目(2009YBZR027)
关键词 IBM模型 JCS统计 庇护所 IBM model JCS statistics refuge
  • 相关文献

参考文献13

  • 1HASSELL M P.The spatial and temporal dynamics of host-parasitoid interactions[M].New York:Oxford University Press,2000. 被引量:1
  • 2HAWKINS B A,THOMAS M B,HOCHBERG M E.Refuge theory and biological control[J].Science,1993,262(5138):1429-1432. 被引量:1
  • 3BRIGGS C J,HOOPES M F.Stabilizing effects in spatial parasitoid-host and predator-prey models:a review[J].Theoretical Population Biology,2004,65(3):299-315. 被引量:1
  • 4MCNAIR J N.The effects of refuges on predator-prey interactions:a reconsideration[J].Theoretical Population Biology,1986,29(1):38-63. 被引量:1
  • 5GONZ(A)LEZ O E,RAMOS J R.Dynamics consequences of prey refuges in a simple model system:more prey,few predators and enhanced stability[J].Ecological Modelling,2003,166(1/2):135-146. 被引量:1
  • 6MA Zhi-hui,LI Wen-long,ZHAO YU,et al.Effects of prey refuges on a predator-prey model with a class of functional responses:the role of refuges[J].Mathematical Biosciences,2009,218(2):73-79. 被引量:1
  • 7黄磊,李自珍,张丰盘,刘洪涛.庇护效应对一类生态-流行病模型稳定性的影响[J].兰州大学学报(自然科学版),2008,44(4):103-106. 被引量:6
  • 8马智慧,李文龙,李自珍,王淑璠.具有已感染者庇护所效应的传染病模型[J].兰州大学学报(自然科学版),2008,44(2):111-114. 被引量:8
  • 9PERSSON L,EKLOV P.Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach[J].Ecology,1995,76(1):70-81. 被引量:1
  • 10MISTRO D C,RODRIGUES LAD,VARRIALE M C.The role of spatial refuges in coupled map lattice model for host-parasitoid systems[J].Bulletin of Mathematical Biology,2009,71(8):1934-1953. 被引量:1

二级参考文献27

  • 1ABRAMS P A, GINZBURG L R. The nature of predation: prey dependent, ratio-dependent or neither[J]. Trends Ecol Evol, 2000, 15(8): 337-341. 被引量:1
  • 2DUBEY B, HUSSAIN B D J. A predator-prey interaction model with self and cross diffusion[J]. Ecol Model,2001,141(1-3): 67-76. 被引量:1
  • 3KOT M. Elements of mathematical ecology[M]. Combridge: Cambridge University Press,2001. 被引量:1
  • 4MURRAY J D. Mathematical biology[M]. New York: Springer, 1993. 被引量:1
  • 5ANDERSON R M, MAY R M. Infectious disease of humans, dynamics and control[M]. Oxford: Oxford University Press, 1991. 被引量:1
  • 6DIEKMAN O, HEESTERBEEK J A P, METZ J A J. Epidemic models,their structure and relation to date[M]. Cambridge: Cambridge University Press,1994. 被引量:1
  • 7HETHCOTE H W, DRIESSCHE P V D. Some epi- demiology models with nonlinear incidence[J]. J Math Biol, 1991, 29(3): 271-287. 被引量:1
  • 8HETHCOTE H W. The mathematics of infectious disease[J]. SIAM Review, 2000, 42(2): 599-653. 被引量:1
  • 9ANDERSON R M, MAY R M. The invasion, persistence, and spread of infectious disease within animal and plant communities[J]. Phi Trans R Soc Lond B, 1986, 314(1 167): 533-570. 被引量:1
  • 10HADELER K P, FREEDMAN H I. Predator-prey population with parasitic infection[J]. J Math Biol,1989, 27(6): 609-631. 被引量:1

共引文献10

同被引文献36

  • 1刘会玉,林振山,温腾.集合种群动态对栖息地毁坏时空异质性的响应[J].生态学报,2007,27(9):3711-3717. 被引量:10
  • 2SCHLEY D, DONCASTER C P SLUCKIN T. Pop- ulation models of sperm-dependent parthenogene-s[J]. Journal of Theoretical Biology, 2004, 229(4)" 559-572. 被引量:1
  • 3WOHRMANN K, LOESCHCKE V, Population biolo- gy and evolution[M]. Berlin: Springer-Verlag 1984: 217-231. 被引量:1
  • 4RANKIN D J KOKKO H. Do males matter? The role of males in population dynamics[J]. Oikos 2007 116(2): 335-348. 被引量:1
  • 5KOKKO H HEUBEL K U, RANKIN D J. How popu- lation persist when asexuality requires sex: the spa- tial dynamics of coping with sperm parasites[J]. Pro- ceedings of the Royal Society B, 2008, 275(1 636): 817-825. 被引量:1
  • 6KITAMURA K, KASHIWAGI K, TAINAKA K I, et al. Asymmetrical effect of migration on a prey- predator model[J]. Physics Letters A, 2006, 357(3): 213-217. 被引量:1
  • 7AMARASEKARE P. Productivity dispersal and the coexistence of intraguild predators and prey[J]. Journal of Theoretical Biology 2006 243(1): 121-133. 被引量:1
  • 8AMENT I, SCHEU S, DROSSEL B. InflUence of spatial structure on the maintenance of sexual reproduction[J]. Journal of Theoretical Biology, 2008, 254(3): 520-528. 被引量:1
  • 9MATSUDA H, OGITA AT SASAKI A, et al. Sta- tistical mechanics of population: the lattice Lotka- Volterra model[J]. Progress of Theoretical Physics, 1992, 88(6)" 1 035-1049. 被引量:1
  • 10BOOTS M, SASAKI A. Parasite-driven extinction in spatially explicit host-parasite systems[J]. The American Naturalist, 2002, 159(6)" 706-713. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部