摘要
用线性极限状态方程逼近非线性极限状态方程是提高可靠性分析精度的一种有效方法,如何选择合适的线性极限状态方程及其数量是保证逼近精度的关键。文章提出了一种计算次线性方程的有效方法,即在已获得的主或次线性方程的基础上,通过迭代优化,根据相邻2个线性方程的相关系数来判断求得的次线性方程是否合适,从而得到下一个线性极限状态方程的展开点及次线性方程;算例验证了所讨论的方法具有较好的精度。
The method of approaching nonlinear limit state equation by linear limit state equation is effective in improving the accuracy of reliability analysis,and the key to this method is how to choose the proper linear limit state equation and its amount.In this paper,an effective method is given to calculate the sub-linear limit state equation.Based on the obtained nonlinear equation,the next expansion point and linear limit equation are acquired with optimally iterative calculation.The correlation coefficient between two adjacent linear equations is used to judge whether the gained sub-linear equation is proper or not.Examples show that the accuracy of the presented method is preferable.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第2期171-174,共4页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(50375042)
关键词
非线性极限状态方程
逼近方法
步长
次线性方程
nonlinear limit state equation
approaching method
step length
sub-linear equation