期刊文献+

一种新的辐射源优化识别方法 被引量:1

A New Optimization Recognition Method for Radiation Source
下载PDF
导出
摘要 针对证据理论无法获得传感器报告、无法处理具有冲突的传感器报告、计算复杂度高、干扰环境下融合结果不可靠等缺点,提出了一种新的辐射源优化识别方法。该方法首先利用灰色关联算法来获得传感器的报告,并且提出利用信息熵解决灰色关联分析中特征权重的选择问题。然后根据传感器证据报告的特点,引入传感器可信度因子,通过构造和分解代价函数将辐射源识别问题转化为求解一个凸二次优化问题。最后,给出了一种利用对数罚函数方法求解该问题的改进方法和步骤。理论分析和仿真结果表明,与证据理论相比,新方法具有更低的计算复杂度、更好的识别能力、更广的适用性和更强的鲁棒性。 Aiming at drawbacks of evidence theory,such as it can not get the confidence probability of evidence,and can not deal with high conflicting evidence,and it is high computational complexity,and has uncertainty in interference environment,a new optimization method of radiation source recognition is presented.Firstly,it uses a gray correlation algorithm to get sensor reports,and a new selection method of feature weights based on information entropy is presented.Then,according to characteristics of senor evidence reports,bringing in the reliability of sensor,and by constructing and decomposing cost function,the problem of radiation source recognition is transformed into a convex quadratic optimization problem.Finally,based on the logarithm penalty function method,an improved method and steps are presented.The theoritical analysis and simulation results prove that this new method is less computational complexity,better recognition ability,more widespread availability and stronger robustness that compared with the theory.
作者 林云 司锡才
出处 《宇航学报》 EI CAS CSCD 北大核心 2011年第2期420-427,共8页 Journal of Astronautics
基金 中央高校基本科研业务费专项资金资助(HEUCF100800111)
关键词 证据理论 灰色关联算法 信息熵 凸二次优化算法 对数罚函数方法 Evidence theory Gray correlation algorithm Information entropy Convex quadratic optimizing algorithm Logarithm penalty function method
  • 相关文献

参考文献12

  • 1司锡才著..反辐射导弹防御技术导论[M].哈尔滨:哈尔滨船舶工程学院出版社,1997:259.
  • 2Waltz E, Lilnas J. Multisensor data fusion[ M]. Boston: Artech House, 1990. 被引量:1
  • 3Li L J, Luo Z Q, Max Wong K. Convex approach to identity fusion for mutlisensor target tracking [J]. System and Humans,2001, 31(3) : 172 -178. 被引量:1
  • 4雷恩清,萧德云.二次优化算法在多源信息融合中的应用[J].计算机工程,2003,29(17):184-186. 被引量:1
  • 5刘梅,权太范,赵磊.基于NFE模型和凸优化方法的属性融合[C].第五届全球智能控制与自动化大会,中国杭州,2004:3165-3169. 被引量:1
  • 6Boyd S, Vandenberghe L. Convex optimization [ M ]. Cambridge: Cambridge University Press, 2004. 被引量:1
  • 7邓聚龙..灰理论基础[M],2002.
  • 8Bersimas D, Luo X. On the worst complexity of potential reduction algorithms for linear programming [ J ]. Mathematical Programming, 1997, 77(3) : 321 -333. 被引量:1
  • 9Yager R R. On the dempster-shafer framework and new combination rules[ J]. Information Science, 1989, 41 (2) :93 - 137. 被引量:1
  • 10Smets. The combination of evidence in the transferable belief model[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, (3) : 202 -216. 被引量:1

二级参考文献3

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部