期刊文献+

Impact factors of soil wind erosion in the center of Taklimakan Desert 被引量:8

Impact factors of soil wind erosion in the center of Taklimakan Desert
下载PDF
导出
摘要 The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an example and using comparative and quantitative methods, discussed the effects of climate, surface roughness (including vegetation cover) and surface soil properties on soil wind erosion. The results showed that the climate factor index C of annual wind erosion is 28.3, while the maximum of C is 13.9 in summer and it is only 0.7 in winter. The value of C has a very good exponential relationship with the wind speed. In Tazhong region, the surface roughness height is relatively small with a mean of 6.32 x 10 Sm, which is in favor of soil wind erosion. The wind erosion is further enhanced by its sandy soil types, soil particle size, lacking of vegetation and low soil moisture content. The present situation of soil wind erosion is the result of concurrent effects of climate, vegetation and surface soil properties. The development and progress of soil wind erosion are influenced by the factors of climate, terrain, soil and vegetation, etc. This paper, taking Tazhong region, a town in the centre of the Taklimakan Desert, as an example and using comparative and quantitative methods, discussed the effects of climate, surface roughness (including vegetation cover) and surface soil properties on soil wind erosion. The results showed that the climate factor index C of annual wind erosion is 28.3, while the maximum of C is 13.9 in summer and it is only 0.7 in winter. The value of C has a very good exponential relationship with the wind speed. In Tazhong region, the surface roughness height is relatively small with a mean of 6.32 x 10 Sm, which is in favor of soil wind erosion. The wind erosion is further enhanced by its sandy soil types, soil particle size, lacking of vegetation and low soil moisture content. The present situation of soil wind erosion is the result of concurrent effects of climate, vegetation and surface soil properties.
出处 《Journal of Arid Land》 SCIE 2011年第1期9-14,共6页 干旱区科学(英文版)
基金 funded by the National key Technology R & D Program (2008BAC40B05-01) the National Natural Science Foundation of China (40775019) Xinjiang Uygur Autonomous Region Science and Technology Key Project (200833119)
关键词 Taklimakan Desert ROUGHNESS particle size soil moisture content soil wind erosion Taklimakan Desert roughness particle size soil moisture content soil wind erosion
  • 相关文献

参考文献10

二级参考文献148

共引文献353

同被引文献200

引证文献8

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部