期刊文献+

用路径跟踪法和核距离矩阵优化大规模SVM

Optimization of large-scale SVM using path following method&kernel distance matrix
下载PDF
导出
摘要 支持向量机在大规模训练集上学习时,存在学习时间长、泛化能力下降的问题。路径跟踪算法具有O(n L)的时间复杂度,能够在多项式时间内求解大规模QP问题。分析了影响SVM分类超平面的主要因素,使用路径跟踪内点算法和核距离矩阵快速约简训练集,再用约简后的训练集重新训练SVM。实验结果表明,重新训练后的SVM模型得到了简化,模型的泛化能力也得到提高。 If the Support Vector Machine(SVM) is trained on large-scale datasets,the training time will be longer and the generalization capability will be descended.The time complexity of the path following interior point method is O(n L),so it has been used to solve many large-scale Quadratic Programming(QP) problems.The main factors for constructing the separating hyper-plane of SVM are stated.The path following method and kernel distance matrix are used to reduce the training datasets,and the SVM is retrained with the reduced datasets.The experimental results show that the SVM model is simpler and the generalization capability is enhanced after using the reduced datasets to train the SVM.
作者 覃华 徐燕子
出处 《计算机工程与应用》 CSCD 北大核心 2011年第3期160-162,169,共4页 Computer Engineering and Applications
基金 广西高校人才小高地建设创新团队计划基金(桂教人[2007]71号)
关键词 支持向量机 路径跟踪算法 核距离矩阵 泛化能力 Support Vector Machine(SVM) path following method kernel distance matrix generalization capacity
  • 相关文献

参考文献11

  • 1Downs T,Gates T E,Masters A.Exaet simplification of support vector sulutious[J].Journal of Machine Learning Research,2001,12(2):293-297. 被引量:1
  • 2Cervantes J,Li Xiaoou,Yu Wen,et al.Support vector machine classification for large data sets via minimum enclosing ball clustering[J].Neurocomputing,2008,71:611-619. 被引量:1
  • 3Lin K M,Lin C J.A study on reduced support vector machines[J].IEEE Trausactions on Neural Networks,2003,14(6):1449-1459. 被引量:1
  • 4Ji Rongrong,Yao Hongxun,Wang Jicheng,et al.Clustering-basod subspace SVM ensemble for relevance feedback learning[C]//Proceedings of IEEE International Conference on Multimedia and Expo,2008:1221-1224. 被引量:1
  • 5Sung E,Zhu Yan,Li Xuchun.Aecelerating the SVM learning for very large data sets[C]//Proceedings of the 18th International Conference on Pattern Recognition,2006:484-489. 被引量:1
  • 6Potra F A.A super linearly convergent predictor-corrector method for degenerate LCP in a wide neighborhood of the central path with O(sqrt(n))-iteration complexity[J].Mathematieal Programming,2004,100:317-337. 被引量:1
  • 7Song Xu.A non-interior path following method for convex quadratic programming problems with bound constraints[J].Computational Optimization and Applications,2004,27:285-303. 被引量:1
  • 8Lu Zhaosong,Renato D C,Jerome W.An iterative sulver-based long-step infeasible primal-dual path-following algorithm for convex QP based on a class of preconditioners[J].Optimization Methods & Software,2009,24:123-143. 被引量:1
  • 9Haasdonk B.Feature space interpretation of SVMs with indefinite kernels[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(4):482-492. 被引量:1
  • 10Cervantes J,Li Xiaonu,Yu Wen,et al.Muiti-class support vector machines for large data sets via minimum enclosing ball clustering[C]//Proceedings of 4th International Conference for Electrical and Electronics Engineering,2007:146-149. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部