期刊文献+

On new chaotic mappings in symbol space

On new chaotic mappings in symbol space
下载PDF
导出
摘要 A well known chaotic mapping in symbol space is a shift mapping.However,other chaotic mappings in symbol space exist too.The basic change is to consider the process not only at a set of times which are equally spaced,say at unit time apart(a shift mapping),but at a set of times which are not equally spaced,say if the unit time can not be fixed.The increasing mapping as a generalization of the shift mapping and the k-switch mapping are introduced.The increasing and k-switch mappings are chaotic. A well known chaotic mapping in symbol space is a shift mapping.However,other chaotic mappings in symbol space exist too.The basic change is to consider the process not only at a set of times which are equally spaced,say at unit time apart(a shift mapping),but at a set of times which are not equally spaced,say if the unit time can not be fixed.The increasing mapping as a generalization of the shift mapping and the k-switch mapping are introduced.The increasing and k-switch mappings are chaotic.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第1期114-118,共5页 力学学报(英文版)
基金 supported by Latvian Scientific(09.1220) ESF Project(2009/0223/1DP/1.1.1.2.0/09APIA/VIAA/008)
关键词 Symbol space Chaotic mapping Increasing mapping k-switch mapping Symbol space · Chaotic mapping · Increasing mapping · k-switch mapping
  • 相关文献

参考文献13

  • 1Holmgren, R.A.: A First Course in Discrete Dynamical Systems. Universitext, 2nd edn., Springer-Verlag (1996). 被引量:1
  • 2Kitchens, B.P.: Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts. Springer-Verlag (1998). 被引量:1
  • 3Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press (1995). 被引量:1
  • 4Robinson, C.: Dynamical Systems. Stability, Symbolic Dynamics, and Chaos. CRS Press (1995). 被引量:1
  • 5Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and Its Applications 17, Addison-Wesley, Reading, MA (1983). 被引量:1
  • 6de Luca, A., Varricchio, S.: Finiteness and regularity in semigroups and formal languages. In: Monographs in Theoretical Computer Science, Springer-Verlag (1999). 被引量:1
  • 7Li, T.Y., Yorke, J.A.: Period three implies chaos. Amer. Math. Monthly 82, 985-992 (1975). 被引量:1
  • 8Devaney, R.: An introduction to chaotic dynamical systems. Benjamin Cummings: Menlo Park, CA (1986). 被引量:1
  • 9Gulick, D.: Encounters with Chaos. McGraw-Hill, Inc. (1992). 被引量:1
  • 10Banks, J., Brooks, J., Cairns, G., et al.: On Devaney's definition of chaos. Amer. Math. Monthly 99, 29-39 (1992). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部