期刊文献+

斜对称q^2-分圆陪集及其应用研究 被引量:4

A Study of Skew Symmetric q^2-cyclotomic Coset and Its Application
下载PDF
导出
摘要 引入斜对称q2-分圆陪集及斜非对称偶的概念,深入考察了n=q2m-1时斜对称分圆陪集及斜非对称偶的性质及确定方法。以此为基础研究了Hermite对偶包含BCH码的极大设计距离。解决了前人留下的一个疑难问题,并改进了前人的一个判别上界,所得到的界是紧的。再利用所得到的满足Hermite对偶包含条件的非狭义BCH码构造出一些具有很好参数的量子纠错码,这些量子码超过已有文献中由狭义BCH码构造的量子纠错码。 On the basis of concepts of skew symmetric-cyclotomic coset and skew asymmetric coset pair,and their properties deeply studied,and methods determined,a maximal design distance of BCH codes with length contained in its Hermitian dual is studied.Thus,such an unsolved problem for maximal design distance of BCH codes with length is solved,upper bound of maximal design distance of BCH codes previously known is improved,and a new upper bound picked up is sharp.By utilizing these Hermitian dual containing non-narrow-sense BCH codes,many new quantum codes with good parameters are constructed,these new quantum codes are better than that constructed from narrow-sense BCH codes in the literature.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2011年第1期87-89,共3页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071255) 陕西省自然科学基础研究计划资助项目(SJ08A02)
关键词 q^2-分圆陪集 斜非对称偶 BCH码 量子码 q2-cyclotomic coset skew asymmetric coset pairs BCH codes quantum codes
  • 相关文献

参考文献7

  • 1Calderbank A R,Rains E M,Shor P W,et al.Quantum error correction via codes over GF(4)[J] ,IEEE trans inf theory,1998,44:1369-1387. 被引量:1
  • 2Ashikhmin A,Knill E.Non-binary quantum stabilizer codes[J].IEEE trans inf theory,2001,47 (7):3065-3072. 被引量:1
  • 3Ketkar A,Klappenecker A,Kumar S,et al.Nonbinary stabilizer codes over finite fields[J].IEEE trans inf theory,2006,52:4892-4914. 被引量:1
  • 4Aly S A,Klappenecker A,Sarvepalli P K.Primitive quantum BCH codes over finite fields[C] //Proc int symp inform theory.[S.l.] :ISIT,2006:1105-1108. 被引量:1
  • 5Aly S A,Klappenecker A,Sarvepalli P K.On quantum and classical BCH codes[J].IEEE trans inform theory,2007,53 (3):1183-1188. 被引量:1
  • 6La Guardia G G.Constructions of new families of nonbinary quantum codes[J].Phys rev A,2009,80(4):042331. 被引量:1
  • 7Sloane N J A,Thompson J GCyclic self-dual codes[J].IEEE trans inform theory,1983,29:364-366. 被引量:1

同被引文献17

  • 1Shor P W. Scheme for Reducing Decoherence in Quantum Computer Memory [J]. Phy Rev A,1995, 52 . 2493-2496. 被引量:1
  • 2Steane A M. Error Correcting Codes in Quantum Theory [J]. Phys rev ltt, 1996, 77:793-797. 被引量:1
  • 3Calderbank A R, Rains E M, Shor P W,et al. Quan- turn Error-Correction Via Codes over GF(4) [J]. IEEE Trans Inf Theory, 1998,441369-1387. 被引量:1
  • 4Gottesman D. Stabilizer Codes and Quantum Error Correction [ D]. California: California Inestitute of Technology. quant-ph/9707027, 1997. 被引量:1
  • 5La G G. Guardia. Constructions of New Families of Nonbinary Quantum Codes [J]. Phy Rev A, 2009, 80 042331(1-11). 被引量:1
  • 6Aly S A,Klappenecker A,Sarvepalli P K. On Quan- tum and Classical BCH Codes [J]. IEEE mrans Inf Theory, ISIT, 2007:1114-1118. 被引量:1
  • 7Huffman W C,Pless V. Fundamentals of Error-Cor- recting Codes Fundamentals of Error- Correcting Codes [ M]. Cambridge : Cambridge University Press, 2003. 被引量:1
  • 8Macwilliams F J,Sloane N J A.The Theory of Error- Correcting Codes [ M ]. Amsterdam Netherlands: North-Holland, 1997. 被引量:1
  • 9Ketkar A, Klappenecker A, Kumar S, et al. Saverpalli. Nonbinary Stabilizer Codes Over Finite Fields [-J]. IEEE Trans Inf Theory, 2006, 52:4892-4914. 被引量:1
  • 10Li RH.Zuo F, Liu Y. Hermitian Dual Containing BCH Codes and Construction of New Quantum Codes I-J]. Quantum Inf Comp, 2013, 13:0021-0036. 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部