期刊文献+

改进的多分量多项式相位信号参数估计 被引量:1

Improved method for multicomponent polynomial phase signal estimation
下载PDF
导出
摘要 乘积高阶模糊函数(PHAF)是以分析多分量多项式相位信号(mc-PPS)而提出来的,但实际上它抑制交叉项的能力有限,仍然难以实现mc-PPS估计。逐次滤波方法是抑制交叉项的有力工具,但存在着分量间的误差扩散;松弛法(RELAX)采用循环迭代方式,对串行估计中的误差扩散有着较强的抑制能力,将二者结合起来提出来了迭代松弛PHAF方法。通过分析被估计信号参数变化时的性能表明改进后的PHAF具有较好的鲁棒性:减少了估计盲区,具有更好的估计精度,具有较低的信噪比(SNR)门限。这些性能由mc-PPS仿真例子所验证。 Though originally proposed for analyzing multi-component polynomial phase signa(lmc-PPS),the Product High-order Ambiguity Function(PHAF) can not be used to estimate mc-PPS directly for its validity is degraded by the interference terms of the mc-PPS.Iterative filtering is an efficient method to suppress interference terms but is troubled by error propagation between components.The Relaxation method(RELAX) is capable of controlling error propagation in sequential estimation by recursive iteration.In this paper,a new method called iterative-RELAX PHAF is proposed by combining iterative filtering and RELAX.Analyzing the performance of the estimated signal variable parameter shows that the improved version of PHAF enjoys better robustness,provides better precision,reduces the blind area and has low threshold of Signal to Noise Ratio(SNR).The performance of the new method is verified by simulations with mc-PPS.
作者 谭文群
出处 《计算机工程与应用》 CSCD 北大核心 2011年第4期124-127,153,共5页 Computer Engineering and Applications
关键词 乘积高阶模糊函数 交叉项 多分量多项式相位信号 参数估计 product high-order ambiguity function interference term multi-component polynomial phase signal parameter estimation
  • 相关文献

参考文献14

  • 1Gershman A B, Pesavento M, Amin M G.Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays[J]. IEEE Transactions on Signal Processing, 2001,49 (12) : 2924-2934. 被引量:1
  • 2Adjrad M,Belouchrani A.Estimation of multicomponent polynomialphase signals impinging on a multisensor array using state-space modeling[J].IEEE Transactions on Signal Processing, 2007,55 ( 1 ) 32-45. 被引量:1
  • 3Barbarossa S, Scaglione A, Giannakis G B.Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J].IEEE Transactions on Signal Processing, 1998,46 (3) :691-708. 被引量:1
  • 4Angeby J.Aliasing of polynomial-phase signal parameters[J]. IEEE Transactions on Signal Processing,2000,48(5):1488-1491. 被引量:1
  • 5Farquharson M, O'Shea P, Ledwich G.A computationally efficient technique for estimating the parameters of polynomialphase signals from noisy observations[J].IEEE Transactions on Signal Processing, 2005,53 (8) : 3337-3342. 被引量:1
  • 6Morelande M R, Zoubir A A.Model selection of random amplirude polynomial phase signals[J].IEEE Transactions on Signal Processing, 2002,50(3) : 578-589. 被引量:1
  • 7PhamDS ZoubirAM.Analysis of multicomponent polynomial phase signals.IEEE Transactions on Signal Processing,2007,55(1):56-65. 被引量:1
  • 8刘庆云,李志舜,李海英,梁红.多分量多项式相位信号的参量估计[J].电子学报,2004,32(12):2031-2034. 被引量:17
  • 9Greenberg J M, Wang Zhisong, Li Jian.New approaches for chirplet approximation[J].IEEE Transactions on Signal Processing, 2007,55 (2) : 734-741. 被引量:1
  • 10Zhou G T, Wang Y.Exploring lag diversity in the high-order ambiguity function for polynomial phase signals[J].IEEE Signal Processing Letters, 1997,4 (8) : 240-242. 被引量:1

二级参考文献6

  • 1Peter O'Shea.A new technique for Instantaneous frequency rate estimation[J].IEEE Signal Processing Letters,2002,9(8):251-252. 被引量:2
  • 2M Z Ikram,G Tong Zhou.Estimation of multicomponent polynomial phase signals of mixed orders[J].Signal Processing,2001,81:2293-2308. 被引量:1
  • 3S Barbarossa,et al.Product high-order ambiguity function for multicomponent polynomia-phase signal modeling[J].IEEE Trans Signal Processing,1998,46(3):691-708. 被引量:1
  • 4Y Wang,G Tong Zhou.On the use of high-order ambiguity function for multicomponent polynomial phase signals[J].Signal Processing,1998,65:283-296. 被引量:2
  • 5S Peleg,B Friedlander.Multicomponent signal analysis using the polynomial phase transform[J].IEEE trans On Aerospace and Electronic systems,1996,32(1):378-386. 被引量:1
  • 6M Z Ikram,et al.Estimating the parameters of Chirp signals:an iterative approach[J].IEEE Trans.Signal Processing,1998,46(12):3436-3440. 被引量:1

共引文献16

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部