期刊文献+

基于IAGA的翼伞系统分段归航轨迹的优化 被引量:7

Optimization in Multiphase Homing Trajectory of Parafoil System Based on IAGA
下载PDF
导出
摘要 归航轨迹的设计和优化对实现翼伞系统的精确空投至关重要。为了实现翼伞系统的准确、安全着陆,根据翼伞系统自身的可操纵性和基本运动特性,采用经典分段归航策略。利用各段轨迹的几何关系将轨迹优化问题转化为参数优化问题,并对基本遗传算法进行了改进,运用新的改进自适应遗传算法(IAGA)进行了有效的求解。仿真试验表明:此方法是可行的,并且所提出的算法可以有效地防止早熟,收敛速度更快;得到的归航轨迹也基本上能够实现定点和逆风着陆的要求。 Design and optimization of homing trajectory is essential for accurate aerial delivery of parafoil system. In order to realize accurate and safe landing of parafoil system, classic multiphase homing trajectory was adopted according to the maneuverability and basic flight characters of the parafoil itself. The trajectory optimization issue was transformed into a parameter optimization issue by use of the geometric relationship between each trajectory. Then the basic genetic algorithm was improved, and an effective solution was obtained by using the Improved Adaptive Genetic Algorithm (IAGA). The result of simulatior/demonstrated that : 1 ) the method is feasible ; 2) the proposed algorithms can prevent premature convergence and improve convergence speed efficiently ; and 3 ) the designed homing trajectory can fullfil the requirements of fixed- point landing and upwind landing.
出处 《电光与控制》 北大核心 2011年第2期69-72,共4页 Electronics Optics & Control
基金 航空科学基金和电光控制技术国防科技重点实验室联合基金
关键词 轨迹规划 翼伞 风坐标系 分段归航 遗传算法 优化设计 trajectory programming parafoil wind coordinate system multiphase homing geneticalgorithm optimal design
  • 相关文献

参考文献10

二级参考文献28

  • 1孙庆先,方涛,郭达志.图像数据挖掘中的关联规则[J].计算机工程,2006,32(5):49-51. 被引量:12
  • 2费烨,李楠楠,郑夕健,谢正义.基于结构和参数自适应的改进遗传算法[J].沈阳建筑大学学报(自然科学版),2006,22(2):338-340. 被引量:3
  • 3张红强,章兢,王耀南,刘健辰,徐磊.机器人关节空间B样条轨迹设计的混沌优化[J].电机与控制学报,2007,11(2):174-177. 被引量:10
  • 4Zhang J, Hsu W, Lee M L. Image mining issues, frameworks, and techniques[C]//Proceedings of the Second International Workshop on Multimedia Data Mining(MDM/KDD 2001 ). San Francisco, CA, USA, 2001 : 13-20 被引量:1
  • 5Stancher P. Using Image Mining for Image Retrieval [ C ]//IASTED. Computer Science and Technology. Proceedings of the IASTED International Conference on Computer Science and Technology. Caneun, Mexico, May 2003. Calgery-Alberta, T3B OM6,Canada:Int. Assoc. of Science and Technology for Development, 2003 : 214-218 被引量:1
  • 6Gibson S, et al. Intelligent mining in image databases, with applications to satellite imaging and to web search[M]. Data Mining and Computational Intelligence. Heidelberg, Germany: Physica- Verlag GmbH, 2001:309-336 被引量:1
  • 7[加]Han Jiawei,Kamber M.数据挖掘概念与技术(第2版)[M].范明,孟小峰,译.北京:机械工业出版社,2007:151-154 被引量:1
  • 8Gao Li,Dai Shangping, et al. Using Genetic Algorithm for Data Mining Optimization in an Image Database[C]//Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). 2007 被引量:1
  • 9Koperski K, Han J. Discovery of spatial association rules in geographic information databases[C] // Proc. of International Symposium on Advanee in Spatial Databases, SSD, LNCS. vol. 951, Springer Verlag, 1995 : 47-66 被引量:1
  • 10Chen G,Wei Q. Fuzzy association rules and the extended mining algorithrns[J]. Information Sciences, 2002,147 : 201-228 被引量:1

共引文献23

同被引文献40

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部