期刊文献+

非因果先验信噪比估计的LSA算法改进 被引量:1

Improvement of LSA Algorithm on Noncausal A Priori SNR Estimation
下载PDF
导出
摘要 对于大多数的语音增强算法,先验信噪比及背景噪音频谱估计的准确与否,对语音增强的效果影响至关重要。为此,在传统MMSE-LSA算法的基础上,提出一种基于非因果先验信噪比估计的LSA改进算法,较好地弥补了传统LSA算法在先验信噪比上估计的不足,同时采用平滑系数动态更新噪音频谱值,使估计值能更好地跟踪噪音的变化。实验结果表明,改进算法能有效减少残余噪音量,提高语音分段信噪比,改善语音质量。 For most speech enhancement process, the accuracy of the a priori SNR and the background noise estimation has great influence. This paper derives traditional MMSE-LSA algorithm based on noncausal a priori SNR estimation. In contrast to the LSA algorithm, it introduces noncausal estimation for the a priori SNR, and utilizes smoothing parameters to change the value of noise spectral which can adaptively adjust to the noise environment. Experimental results show the new algorithm yields a higher improvement in the segmental SNR, lower residual noise and better enhancement of speech quality.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第3期178-179,182,共3页 Computer Engineering
基金 上海市国际科技合作基金资助项目(062107037 075107005)
关键词 非因果先验信噪比估计 背景噪音估计 MMSE—LSA算法 noncausal a priori SNR estimation background noise estimation MMSE-LSA algorithm
  • 相关文献

参考文献5

二级参考文献9

  • 1陶智,赵鹤鸣,龚呈卉.基于听觉掩蔽效应和Bark子波变换的语音增强[J].声学学报,2005,30(4):367-372. 被引量:39
  • 2Martin R. Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics[J]. IEEE Transactions on Speech and Audio Processing, 2001, 9(5): 504-512. 被引量:1
  • 3Cohen I. Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement[J]. IEEE Signal Processing, 2002, 9(1): 12-15. 被引量:1
  • 4Sundarrajan R, Loizou P C. Noise Estimation Algorithm with Rapid Adaptation for Highly Nonstationary Environments[J]. Speech Communication, 2006, 48(2): 220-231. 被引量:1
  • 5Yi H, Loizou P C. Evaluation of Objective Measures for Speech Enhancement[C]//Proceedings of INTERSPEECH'06. Pittsburg, USA: [s. n.], 2006: 588-601. 被引量:1
  • 6Benesty J, Makino S, Chen J. Speech Enhancement[M]. Berlin, Germany: Springer, 2005. 被引量:1
  • 7Rassmussen C E, Williams K I. Gaussian Processes for Machine Learning[M]. Cambridge, MA, USA: MIT Press, 2006. 被引量:1
  • 8Park S, Choi S. Gaussian Process Regression for Voice Activity Detection and Speech Enhancemen[C]//Proc. of International Joint Conference on Neural Networks. [S. l.]: IEEE Press, 2008: 2879-2882. 被引量:1
  • 9Martin R. Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics[J]. IEEE Trans. on Speech and Audio Processing, 2001, 9(5): 504-512. 被引量:1

共引文献8

同被引文献16

  • 1张鹏,张艳宁,付中华,张亚娟.基于MMSE-LSA语音增强算法在非平稳环境下的研究与实现[J].计算机工程与设计,2007,28(19):4695-4697. 被引量:6
  • 2WANG L, KITAOKA N, NAKAGAWA S. Analysis of effect of compensation parameter estimation for CMN on speech/speaker recognition[C]//Proceedings of ISSPA 2007. Sharjah: IEEE, 2007 : 1-4. 被引量:1
  • 3HU Yi, LOIZOU P C. A generalized subspace ap- proach for enhancing speech corrupted by colored noise [J]. IEEE Trans on Speech and Audio Processing, 2003,11 (4) : 334-341. 被引量:1
  • 4KIM H K, ROSE R C. Cepstrum-domain model com- bination based on decomposition of speech and noise u- sing MMSE-LSA for ASR in noisy environments[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009,17(4) : 704-713. 被引量:1
  • 5CHANG Hong, YEUNG D, XIONG Yimin. Super- resolution through neighbor embedding [ C]//IEEE Conference on Computer Vision Pattern Recogni- tion. Washington DC: IEEE Computer Society, 2004: 275-282. 被引量:1
  • 6GONG Linyu,CHEN Changxing,CHEN Qi, et al. An improved LSA-MMSE speech enhancement approach based on auditory perception[C]//Future Information Technology Management Engineering,2008.Leices- tershire: IEEE Computer Society, 2008:292-295. 被引量:1
  • 7GERKMANN T, KRAWCZYK M, MARTIN R, et al. Speech presence probability estimation based on tem- poral cepstrum smoothing [C]//IEEE International Conference on Acoustics Speech Signal Processing. Dallas TX:IEEE, 2010:4254-4257. 被引量:1
  • 8FU Zhonghua,WANG Jhingfa.Speeeh presence proba- bility estimation based on integrated time-frequency minimum tracking for speech enhancement in adverse environments[C]//IEEE International Conference on Acoustics Speech & Signal Processing. Dallas TX: IEEE, 2010:4258-4261. 被引量:1
  • 9COHEN I.Noise spectrum estimation in adverse envi- ronments:Improved minima controlled recursive avera- ging[J]. Speech and Audio Processing, 2003,11 (5) :466-475. 被引量:1
  • 10LIN L, AMBIKAIRAJAH E,HOLMES W H. Speech enhancement for nonstationary noise environment[C]//Proceedings of Circuits Systems,2002.Singa- pore: IEEE, 2002 : 177-180. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部