期刊文献+

基于非线性光谱混合模型的遥感影像提取城市不透水层(英文) 被引量:6

Urban Impervious Surface Extraction from Remote Sensing Image Based on Nonlinear Spectral Mixture Model
下载PDF
导出
摘要 针对传统方法在提取城市不透水层中的许多局限性,采用两种非线性光谱混合分解模型,包括混合调谐匹配滤波和多层感知器神经网络,通过混合像元分解获取城市不透水层.混合调谐匹配滤波利用用户选择的端元,通过最大化端元响应并减少未知背景信息的影响,进行局部分解端元.多层感知器由多个感知器组成,能够很好的进行非线性学习.对Landsat TM遥感影像进行最大噪声分离,使其转换到另外一个特征空间.利用新生成数据集的前三个成分(占90%以上信息量)进行纯净像元提取,并利用N维可视化分析器寻找出四个进行分解的端元:植被、高反射率地物、低反射率地物和土壤。不透水层则由高反射率和低反射率两个分量估算而成。对不同模型提取的结果,利用QuickBird多光谱图像评价其准确性.实验结果表明人工神经网络的精度最高,即非线性光谱混合模型同样可以有效地提取不透水层,精度甚至优于线性模型. Aiming at overcoming the limitations in extracting impervious surface by traditional methods,two non-linear spectral mixture models,Mixture Tuned Matched Filtering (MTMF) and Multi-Layer Perceptron(MLP) neural network,are used to decompose all pixels to the four fraction images representing the abundance of four endmembers.In these models,MTMF performs a "partial" unmixing by only finding the abundance of a single,user-defined endmember,by maximizing the response of the endmember of interest and minimizing the response of the composite unknown background.The MLP is a hierarchical structure of several perceptrons,and capable of learning a rich variety of nonlinear decision surfaces.The Maximum Noise Fraction(MNF) is used to transform the six bands of TM image into a newfeature space and the first three components accounting for the majority (more than 90 %) of total information content are used to endmember extraction.After that,the Pure Pixel Index(PPI) is used to select pure pixels.The N-dimensional visualizer is used for assisting selection of four endmembers :vegetation,high-albedo objects,low-albedo objects and soil.The fraction images are derived to represent the abundance of the above four endmember.Impervious surface is esti mated by analyzing high-albedo and low-albedo fraction images.QuickBird multi-spectral image is used to evaluate the accuracy of impervious surface extraction by different methods.Experimental results indicate that the accuracy of artificial neural networkis higher than others,which means non-linear spectral mixture models is also effective to impervious area extraction,even better thanlinear models.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第1期13-18,共6页 Acta Photonica Sinica
基金 The National High Technology Research and Development Program of China(2007AA12Z162) the Natural Science Foundation of China(40871195) the Specialized Research Fund for the Doctoral Program of Higher Education(20070290516)
关键词 光谱混合模型 不透水层 人工神经网络 多层感知器 Spectral mixture model Impervious surface Artificial neural network Multi-layerperceptron
  • 相关文献

参考文献13

  • 1WENG Qi-hao.Remote sensing of impervious surfaces[M].Florida:CRC Press/Taylor and Francis,2007:454-457. 被引量:1
  • 2LU Deng-sheng,WENG Qi-hao.Use of impervious surface in urban land-use classification[J].Remote Sening of Environment,2006,102(1-/2):146-160. 被引量:1
  • 3WU Chang-shan,MURRAY A T.Estimating impervious surface distribution by spectral mixture analysis[J].Remote Sensing of Environment,2003,84(4):493-505. 被引量:1
  • 4SMALL C.Estimation of urban vegetation abundance by spectral mixture analysis[J].International Journal of Remote Sensing,2001,22(7):1305-1334. 被引量:1
  • 5MARSAND J,CROWLEY J.Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast idaho using AVIRIS imagery and digital elevation data[J].Remote Sensing of Environment,2003,84(3):422-436. 被引量:1
  • 6CHANG D H,ISLAM S.Estimation of soil physical properties using remote sensing and artificial neural network[J].Remote Sensing of Environment,2000,74(3):534-544. 被引量:1
  • 7WILLIAMS A P,HUNT E R.Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering[J].Remote Sensing of Environment,2002,82 (2/3):446-456. 被引量:1
  • 8WENG Qi-hao,HU Xue-fei.Medium spatial resolution satellite Imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J].IEEE Trans on Geoscience and Remote Sensing,2008,46(8):2397-2406. 被引量:1
  • 9HU Xue-fei,WENG Qi-hao.Estimating impervious surfaces from medium spatial resolution imagery using the selforganizing map and multi-layer perceptron neural networks[J].Remote Sensing of Environment,2009,113(10):2089-2102. 被引量:1
  • 10WENG Qi-hao,LU Deng-sheng.A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with imprevious surface and vegetation coverage in Indianapolis,United States[J].International Journal of Applied Earth Observation and Geoinformation,2008,10(1):68-83. 被引量:1

二级参考文献9

  • 1Rundquist D, Lawson M, Queen L, et al. The Relationship Between the Timing of Summer-Season Rainfall Events and Lake-Surface Area[J]. Water Resources Bulletin, 1987, 23(3): 493-508. 被引量:1
  • 2Boland D H P. Trophic Classification of Lakes Using Landsat-1(ERTS-1) Multispectral Scanner Data[A]. US EPA, Office of Research and Development, Corvallis Environmental Research Laboratory[A], Corvallis, Oregon, 1976. 被引量:1
  • 3McFeeters S K. The Use of Normalized Difference Water Index(NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. 被引量:1
  • 4Jensen J R. Introductory Digital Image Processing: A Remote Sensing Perspective[M]. NJ: Prentice Hall Logicon Geodynamics, Inc., 1996. 被引量:1
  • 5Rouse J W, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[A]. Third ERTS Symposium[C], 1973, NASA SP-351, 1: 309-317. 被引量:1
  • 6Gao B C. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J]. Remote Sensing of Environment, 1996, 58: 257-266. 被引量:1
  • 7Wilson E H, Sader S A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery[J]. Remote Sensing of Environment, 2002, 80: 385-396. 被引量:1
  • 8杜云艳,周成虎.水体的遥感信息自动提取方法[J].遥感学报,1998,2(4):364-369. 被引量:194
  • 9都金康,黄永胜,冯学智,王周龙.SPOT卫星影像的水体提取方法及分类研究[J].遥感学报,2001,5(3):214-219. 被引量:245

共引文献1422

同被引文献196

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部