摘要
对转速为1.6×105r/min的精密摆角铣头主轴系统的2种气体静压轴承,即双排孔圆柱轴承和闭式平面止推轴承进行设计研究.对两种气体静压轴承在不同节流方式、不同节流孔直径下的最佳气膜厚度和对应的最大刚度进行设计计算,得到该轴承结构参数对其刚度的影响规律.利用FLUENT软件对所设计轴承的气体流动状况进行数值模拟,得到偏心距变化引起该轴承刚度和承载能力变化的规律,并优化了摆角铣头气体轴承的结构参数.结果表明:当轴承在小偏心(ε<0.3μm)以及极小偏心下工作时,刚度为常数,轴承的承载能力随偏心距的增大而增大.
Two kinds of aerostatic bearing: two-row cylindrical bearings and closed-hole planar thrust bearing in the precision swing angle milling head spindle system were studied. To get the best film thickness and the corresponding maximum stiffness of the bearings in different throttling ways and under different Orifice diameter, the law of the bearing stiffness impacted by different structure parameters was obtained by using engineering design and calculation methods and the numerical simulation of the aerostatic bearing flow was carried out by FLUENT, which indicated that the change of the bearing stiffness and carrying capacity was caused by the change of eccentricity. Meanwhile the structural parameters of the aerostatic bearing were optimized. Results show that when the bearings are working under a small eccentricity (ε〈0.3μm) , its stiffness is a constant, and the carrying capacity increases with the increasing of eccentricity.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2011年第1期68-73,共6页
Journal of Harbin Institute of Technology
基金
黑龙江省科技攻关计划项目(GB04A503-2)