期刊文献+

融合光流速度与背景建模的目标检测方法 被引量:17

Background modeling and object detecting based on optical flow velocity field
原文传递
导出
摘要 为了克服传统基于像素的背景建模方法不能很好地描述背景运动的问题,提出了一种融合光流速度与背景建模的目标检测方法。结合像素的灰度信息、空间信息和时间信息计算出每个像素的光流速度,利用光流速度在时间域上的统计信息为背景建立光流速度场模型。利用建立的背景模型快速、准确地实现运动目标的检测。实验结果表明,融合光流速度的背景建模方法能有效地描述背景的运动,显著降低运动背景产生的噪音,鲁棒地实现运动目标检测。 The traditional pixel-based background model cannot represent the background motion efficiently. In this paper, a novel strategy is proposed to model background and track moving objects based on optical flow velocity field. Statistics on intensity, spatial and temporal information of pixels are extracted to generate the optical flow field, which is used to formulate a novel background model for tracking moving objects efficiently and exactly. This optical-flow-field-based strategy can reduce noise generated by background motion significantly and track moving objects robustly, as illustrated in our experiments.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第2期236-243,共8页 Journal of Image and Graphics
基金 国家基础研究发展计划项目(973)(2004CB318103) 国家高技术研究发展计划项目(863)(2007AA012138578) 国家自然科学基金项目(60033020) 中国科学院海外杰出人才研究计划项目(06S3011S01) 软件工程国家重点实验室开放基金支持项目(SKLSE2008-07-19)
关键词 背景建模 光流法 目标检测 混合高斯 background modeling optical flow object detecting mixture of Gauss
  • 相关文献

参考文献15

  • 1Li L, Luo R. Context-controlled adaptive background subtraction [EB/OL].[ 2009-12- 3 ]. http://www, cvg. rdg. ac. uk/ PETS2OO6/PETS2006_PROCEEDIN GS. pdf. 被引量:1
  • 2Wren C, Azarbayejani A. Pfinder: Real-time tracking of the human body [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780-785. 被引量:1
  • 3Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction [ J]. Pattern Recognition, 2004, 2 ( 17 ) : 28-31. 被引量:1
  • 4Elgammal A, Duraiswami R. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ EB/OL ]. [ 2009- 12- 3 ]. http://citeseerx, ist. psu. edu/viewdoc/doweload? doi = 10. 1. 1. 20. 215&rep = repl &type = pdf. 被引量:1
  • 5Shlens J. A tutorial on principal component analysis [ C ]// Systems Neumbiology Laboratory. San Diego, American: University of California,2005 : 1-26. 被引量:1
  • 6王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 7Papenberg N, Bruhn A. Highly accurate optic flow computation with theoretically justified warping [ J ]. International Journal of Computer Vision, 2006, 67(2) : 141-158. 被引量:1
  • 8Barton J, Fleet D. Performance of optical flow techniques [ J ]. International Journal of Computer Vision, 1994, 12 (1) : 43-77. 被引量:1
  • 9Bruhn A, Weickert J. Variational optical flow computation in real time[J]. Image Processing, IEEE Transactions on, 2005, 14(5) : 608-615. 被引量:1
  • 10Bruhn A, Weickert J. Lucas/Kanade Meets Horn/Schunck: Combining local and global optic flow methods[J]. International Journal of Computer Vision, 2005, 61 (3): 211-231. 被引量:1

二级参考文献112

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143 被引量:1
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81 被引量:1
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56 被引量:1
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990 被引量:1
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066 被引量:1
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252 被引量:1
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785 被引量:1
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89 被引量:1
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964 被引量:1
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14 被引量:1

共引文献277

同被引文献145

引证文献17

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部