期刊文献+

改进CMAC在森林火焰识别中的应用 被引量:3

Application of improved cerebella model articulation controller in forest fire recognition
下载PDF
导出
摘要 由于传统火情识别存在的缺陷,提出一种基于双曲正割函数的变步长最小均方(LMS)算法的小脑模型神经网络(CMAC)森林火焰识别系统。通过分析火焰初期的一些静态和动态特性,对森林火焰进行初步识别。并在利用最优阈值搜寻法对图像进行分割处理的基础上,提取出相应的特征向量,作为改进CMAC的输入,利用神经网络进行森林火焰检测与识别。实验仿真表明,能对火焰进行准确、有效的判别。 Concerning the defects of traditional fire recognition, a forest fire recognition system of Cerebella Model Articulation Controller (CMAC) network, which was based on variable step Least Mean Square (LMS) algorithm of hyperbolic secant, was presented. Through analyzing some initial static and dynamic characteristics, forest fire was preliminarily identified. And on the basis of image segmentation using the optimal threshold search method, the corresponding eigenvectors were extracted as the input of the improved CMAC network to detect and identify forest fire. The simulation results show that the improved method can accurately and efficiently identify flame.
作者 王华秋 刘轲
出处 《计算机应用》 CSCD 北大核心 2011年第3期860-864,共5页 journal of Computer Applications
基金 重庆市教委科学研究项目(KJ100805) 重庆市科委攻关项目(CSTC2009AC2068)
关键词 森林火焰 最优阈值搜索法 变步长 小脑算术计算模型网络 最小均方算法 forest fire optimal threshold search method variable step Cerebella Model Articulation Controller (CMAC) network Least Mean Square (LMS) algorithm
  • 相关文献

参考文献17

二级参考文献101

共引文献129

同被引文献18

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2张海军,穆志纯,张成阳.基于ICA和BP神经网络的人耳图像识别[J].北京科技大学学报,2006,28(6):600-603. 被引量:6
  • 3李明,吴爱国.大空间早期火灾的双波段图像型探测方法[J].低压电器,2007(2):37-40. 被引量:15
  • 4CELIK T,SEYIN OH,DEMIREL H.Fire pixel classification using fuzzy logic and statiaical color model[C] //ICASSP 2007:IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ:IEEE Press,2007:1207-1208. 被引量:1
  • 5EBERT J,SHIPLEY J.Computer vision based method for fire detection in color videos[J].International Journal of Imaging,2009,23(2):163-166. 被引量:1
  • 6WIRTH M,ZAREMBA R.Flame region detection based on histogram backprojection[C] //2010 Canadian Conference Computer and Robot Vision.Washington,DC:IEEE Computer Society,2010:1163-1167. 被引量:1
  • 7ZHENG GUANG-XU,JIA LIN-XU.Automatic fire smoke detection based on image visual features[C] // International Conference on Computational Intelligence and Security Workshops. Piscataway,NJ:IEEE Press,2007:316-319. 被引量:1
  • 8YANG M,ZHANG L,YANG J.et al.Metaface learning for space representation based face representation[C] // Proceedings of the 17th IEEE International Conference on Image Processing. Piscataway,N J:IEEE Press,2010:1601-1604. 被引量:1
  • 9吕立新,丁德锐,杨克玉,等.基于ARM和图像识别算法的火灾探测系统设计[J].计算机工程与没计,2008,29(101:2530-2533. 被引量:1
  • 10Celik T, Seyin O H, Demirel H. Fire Pixel Classification Using Fuzzy Logic and Statistical Color Model[C]//Proc. of IC'07. New York, USA: IEEE Press, 2007: 1207- 1208. 被引量:1

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部