期刊文献+

基于熵聚类的泛函网络神经元函数优化

Optimizing Neuron Function in Functional Networks Based on Entropy Clustering
下载PDF
导出
摘要 泛函网络是神经网络的一般化推广,至今还没有统一的系统设计方法能够对给定问题设计出近似最优的结构。为了获得良好的网络结构,本文利用熵聚类的思想,提出一基于熵聚类思想的设计泛函网络的方法,对网络每一神经元的共存且相互影响的基函数和泛函参数进行最优搜索,实现泛函网络结构和泛函参数的共同学习。对一非线性函数进行逼近比较仿真实验,结果表明,逼近效果较好,且收敛速度较快,并表明所设计的泛函网络有效地提高了泛函网络的收敛精度,还可获得更为合理的网络结构。 Functional network introduced recently is an extension of neural networks.Up to the present,there is no general system designing method for designing approximation functional networks structure.In this paper,based on an entropy clustering idea,a novel entropy clustering method for designing functional network is proposed.This method can get the base function and its parameters with optimal searching,achieving the learning between functional network structure and the functional parameters.For a nonlinear function,a comparing simulation experiment is designed,the effect of approximation is better,and convergent speed is also faster.The simulation results show that the proposed method in this paper can produce very rational structure and functional networks convergent precision is improved greatly.
出处 《计算机仿真》 CSCD 北大核心 2011年第2期200-203,共4页 Computer Simulation
关键词 泛函网络 熵聚类 神经元函数 Functional network Entropy clustering Neuron function
  • 相关文献

参考文献6

  • 1Enrique Castino. Functional Networks[ J]. Neural Processing Letters,1998,7:151 - 159. 被引量:1
  • 2Enrique Castillo, Angel Cobo, Jose Manuel Cutierrez. Functional Networks with Applications [ M ]. Kluwer Academic Publishers, 1999. 被引量:1
  • 3Alfonso Iglesias, Bernardino Arcay, J M Cotos, J A Taboada, Carlos Dafonte. A comparison between functional networks and artificial neural networks for the prediction of fishing catches[ J]. Neural computer & applied, 2004,13:24 -31. 被引量:1
  • 4Zhou Yongquan, Wang Dongdong, Zhang Ming. Designing Functional Networks Through Evolutionary Programming[ C]. Proceedings of the 6th World Congress on Intelligent Controland Automation. June 21 -23, 2006. 被引量:1
  • 5J Yao, et al. Entropy -based fuzzy clustering and modeling[ J]. Fuzzy Sets and Systems, 2000,113 ( 3 ) : 182 - 188. 被引量:1
  • 6王华丽,周尚波.基于熵聚类的RBF神经网络学习算法[J].计算机仿真,2008,25(11):168-171. 被引量:4

二级参考文献6

  • 1苏美娟,邓伟.RBF神经网络的一种快速鲁棒学习算法[J].苏州大学学报(工科版),2007,27(1):17-20. 被引量:3
  • 2S Haykin, Neural Network. A comprehensive foundation (SecondEdition). Tsinghua University Press & Prentice Hall, 2001:298 - 305. 被引量:1
  • 3H Guang - Bin, P Saratchandran, S Narasimhan. A Generalized growing and pruning RBF neural network for function approximation. IEEE Transactions on Neural Network ,2005,16 ( 1 ) :57 - 67. 被引量:1
  • 4H Sarimveis, A Alexandridis, S Mazarakis, G Bafas. A fast training algorithm for RBF networks based on substraetive clustering. Neuro- computing ,2003,51:501 - 505. 被引量:1
  • 5S Chiu. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 1994, 2 (3) :267 -278. 被引量:1
  • 6J Yao, et al. Entropy -based fuzzy clustering and modeling. Fuzzy Sets and Systems, 2000, 113(3) :282-188. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部