期刊文献+

集值向量变分不等式组的数量化方法

A Scalarization Approach for a System of Set-valued Vector Variational Inequalities
下载PDF
导出
摘要 文章定义了四种集值变分不等式组,即分别具有强解和弱解的集值向量变分不等式组和集值数量化变分不等式组。通过运用Konnov的数量化方法,研究将一个集值向量变分不等式组转化为一个集值数量化变分不等式组,并给出了两种集值变分不等式组的等价条件。 In this paper, four kinds of systems of set-valued variational inequalities were defined, that is, strong and weak systems of set-valued vector variational inequalities, and strong and weak systems of set-valued scalar variational inequalities. By applying the approach of Konnov, the scalar system of set-valued variational inequalities of a system of set-valued vector variational inequalities was presented, then the equivalence of these two systems of set-valued variational inequalities was given.
作者 明国芬
出处 《四川理工学院学报(自然科学版)》 CAS 2011年第1期38-40,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅重点科研项目(07ZA123)
关键词 数量化方法 集值向量变分不等式组 Kneser极大极小值定理 弱*紧 scalarization approach systems of set-valued vector variational inequalities Kneser minimax theorem weakly * compact
  • 相关文献

参考文献6

  • 1Konnov I V.A scalarization approach for vector variational inequalities with applications [J].Journal of Global Optimization ,2005 ,32:517 -527. 被引量:1
  • 2Luc D T.Theory of Vector Optimization[M].Berlin-Heidelberg-New York:Springer-Verlag,1989. 被引量:1
  • 3Podinovsldi V V, Nogin V D.Pareto-Optimal Solutions of Multicriteria Problerm[M].Moscow(in Russian):Nauka, 1982. 被引量:1
  • 4Li J, Mastmeni G.Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions [J]. Journal Optirnization Theory Application,2010,145:355-372. 被引量:1
  • 5Li J,Huang N J,Yang X Q.Weak sharp minima for setvalued vector variational inequalities with an application[J].European Joumal of Operational Research,2010, 205 2,62 -272. 被引量:1
  • 6Kneser H. Sur un theoreme fundamental de la theorie des jeux[J].C.R.Academy Science Paris,1952,234:2418- 2420. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部