期刊文献+

实际地形风场CFD模拟中粗糙度的影响分析 被引量:20

EFFECT OF ROUGHNESS ON CFD WIND FIELD SIMULATION OVER NATURAL TERRAIN
下载PDF
导出
摘要 以苏格兰Askervein小山为例,基于Fluent流体计算平台,结合NURBS地形建模方法,模拟了实际地形下的风场分布。分别在粗糙度长度为0~0.05m的情况下进行CFD风场模拟试验。与实测的风速加速比进行比较,发现模拟所得的风速加速比均方根误差在迎风面保持在6%以内,而背风面最大为26.56%,表明粗糙度条件对CFD风场模拟结果有较大影响。实现了用于CFD风场模拟的下垫面粗糙度精细化方法。在迎风坡和背风坡设置不同粗糙度长度的情况下,风速加速比均方根误差减小为7.42%,模拟结果在背风坡区域有明显改善。最后指出,在进行复杂地形风场CFD数值模拟时,有必要进行粗糙度条件的精细化设置。 By employing NURBS technologies for natural terrain modeling, CFD wind field simulation over the Askervein hill of Scotland was performed using Fluent software. Wind field simulations were carried out under different settings of roughness length between 0 and 0.05m. By comparing wind speed-up ratios of simulations with that of along two lines, results have shown that root mean square error (RMSE) of wind speed-up ratio is within 6% for the windward slope, while it reaches 26.56% for the leeward slope. The simulations have shown that roughness parameter can greatly influence the accuracy of CFD wind field simulation. Further, the wall roughness refinement experimental schemes have been tested. Different roughness lengths are designated for windward slope and leeward slope, simulations show the RMSE of wind speed-up ratio reduces to 7.42%, which gains obvious improvement in CFD simulation, especially for the leeward slope with relative low speed. Finally, the results indicate that it is necessary to refine roughness conditions in CFD wind field simulation in complex terrain regions.
机构地区 中山大学工学院
出处 《太阳能学报》 EI CAS CSCD 北大核心 2010年第12期1644-1648,共5页 Acta Energiae Solaris Sinica
基金 国家高技术研究发展(863)计划项目(2008AA05Z414)
关键词 CFD 风场数值模拟 实际地形 粗糙度 CFD wind field numerical simulation natural terrain roughness
  • 相关文献

参考文献4

二级参考文献23

  • 1胡鹏,陈东,郑银鹤,熊杰伟.三维山体过山气流流场特征的数值模拟[J].河南气象,1996(4):2-4. 被引量:4
  • 2魏慧荣,康顺.风电场地形绕流的CFD结果确认研究[J].工程热物理学报,2007,28(4):577-579. 被引量:14
  • 3Ishihara T, Hibi K. Numerical Study of Turbulence Wake Flow Behind a Three-Dimensional Steep Hill. J. Wind and Structure, 2002, 5(2): 317-328 被引量:1
  • 4NUMECA. Fine/Turbo user.znanuals. Numeca Company, 2005 被引量:1
  • 5Wieringa J. Representative Roughness Parameters for Homogeneous Terrain. J. Boundary Layer Meteorology, 1993, 63(3): 323-364 被引量:1
  • 6A Khotanzad, et al. ANNSTLF - Artificial Neural Network Short - term Load Forecaster - Generation three [ J ]. IEEE Trans. on Power Systems, 1998. 13(4) : 1413 - 1422. 被引量:1
  • 7H. Yoo and R. L. Pimmel. Short term Load Forecasting Using a Self-supervised Adaptive Neural Network [ J]. IEEE Trans. on Power Systems, ,1999. 14(2) : 779 -784. 被引量:1
  • 8Ho K L, et al. Short Term Load Forecasting Using a Multiplayer Neural Network With an Adaptive Learning Algorithm[ J]. IEEE Trans. on Power Systems. 1992,7 : 141 - 148. 被引量:1
  • 9邹森.时间序列自适应短期负荷预测[J].山东工业大学学报,1998,18(2). 被引量:1
  • 10Vapnik V. The nature of Statistical Learning Theory [ M ].Springer - Verlag, New York, 1999. 被引量:1

共引文献36

同被引文献163

引证文献20

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部