期刊文献+

太阳能蒸馏器非稳态传热传质问题的研究 被引量:4

STUDY ON UNSTEADY HEAT AND MASS TRANSFER OF SOLAR STILL
下载PDF
导出
摘要 建立了太阳能蒸馏器的非稳态物理数学模型,对其进行了传热、传质问题的研究,分析结果与试验结果吻合较好。结果表明:海水蒸发是海水温度和△T共同作用的结果。温度差是驱动海水蒸发的动力,水温对水表面蒸发有重要影响。在任何温度下,表面蒸发都可进行,但对蒸馏器来说,只有水温超过40℃,且△T为正值时,才有显著的蒸发,收到可观的淡水。高峰产水区主要在下午与傍晚时段,此时段占整个昼夜的比例不大,但是其对日产水量的贡献却是主要的。随着海水深度的增加,瞬时产水量白天减少,晚上增加,日产水量减少;当水深大于10cm时,日产水量变化不大;随着环境风速的增加,瞬时产水量白天增加,晚上减少,风速对日产水量的影响很小,但强风使日产水量有所下降。 The unsteady physical mathematics model of solar still was establishes and the heat and mass transfer was analyzed. The theoretical predictions were identical with the experimental results. The results show that seawater evaporation is the result of collective action of the seawater temperature and inner glass temperature A T. The difference between seawater and inner glass temperature A T is the power of seawater evaporation, and the seawater temperature has an important influence on the evaporation of the surface seawater. The seawater can evaporate in any temperature, but, for still, the surface water can be evaporated prominently and can get much freshwater, only when the temperature exceeds 40℃ and when A T is positive. The peak periods of distillate yield are mainly on afternoons and evenings, which, though takes up little in the whole day and night, have mainly contributed to daily distillate yield. With the increase of the seawater depth, the transient distillate yield becomes less in the day time and becomes more at night. And the total daily distillate yield decreases. When the depth is more than 10cm, there are few changes in the daily distillate yield. With the increase of wind speed, the transient distillate yield increases in the day time and decreases at nights. Wind speed has a little influenee on daily distillate yield, but strong wind can reduce the daily distillate yield.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2010年第12期1591-1597,共7页 Acta Energiae Solaris Sinica
基金 河海大学自然科学基金(2007419611)
关键词 太阳能蒸馏器 海水蒸发 传热传质 solar distillation seawater evaporation heat and mass transfer
  • 相关文献

参考文献9

  • 1郑宏飞,何开岩,陈子乾著..太阳能海水淡化技术[M].北京:北京理工大学出版社,2005:236.
  • 2李宗楠 吴青.太阳能蒸馏器.太阳能学报,1980,1(1):29-36. 被引量:1
  • 3Velmurugan V,Srithar K.Solar stills integrated with a mini solar pond-analytical simulation and experimental validation[J].Desalination,2007,216(1-3):232-241. 被引量:1
  • 4Dimri Vimal,Sarkar Bikash,Smqh Usha,et al.Effect of the condensing cover material on yield of an active solar still:an experimental validation[J].Desalination,2008,227((1-3):178-189. 被引量:1
  • 5Badran O O,Abu-Khader M M.Evaluating thermal performance of a single slope solar still[J].Heat Mass Transfer,2007,43(10):985-995. 被引量:1
  • 6Tiwari A K,Tiwari G N.Effect of the condensing cover's slope on internal heat and mass transfer in distillation:an indoor simulation[J].Desalination,2005,180(1-3):73-88. 被引量:1
  • 7康绍忠,刘晓明,高新科,熊运章.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992,24(3):1-12. 被引量:56
  • 8张素宁,田胜元.太阳辐射逐时模型的建立[J].太阳能学报,1997,18(3):273-277. 被引量:56
  • 9Chapra S C,CalVe R P.Numerical Methods for Engineers[M].New York:McGraw-Hill,1989. 被引量:1

二级参考文献9

共引文献105

同被引文献23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部